The MiniCLEAN
Dark Matter Experiment

Stanley Seibert
Los Alamos National Laboratory
August 3, 2010
Scintillation in Noble Liquids

Energy deposition in noble liquids produces short lived excited diatomic molecules in singlet and triplet states.
Pulse Shape Analysis

<table>
<thead>
<tr>
<th></th>
<th>Singlet</th>
<th>Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>~10ns</td>
<td>13 s</td>
</tr>
<tr>
<td>Ne</td>
<td><18.2 ns</td>
<td>14.9 μs</td>
</tr>
<tr>
<td>Ar</td>
<td>7 ns</td>
<td>1.60 μs</td>
</tr>
<tr>
<td>Xe</td>
<td>4.3 ns</td>
<td>22 ns</td>
</tr>
</tbody>
</table>

- **Electronic recoil**
- **Nuclear Recoil**

Triplet state highly suppressed!
Rejecting Electron-like Events

- Discriminate with ratio of prompt to total light
- Reject beta and gamma backgrounds with greater than 10^8 efficiency
Single Phase Ar/Ne Detectors

Advantages:

- Target material is relatively inexpensive (and swappable in MiniCLEAN)
- No need for electric fields to drift charge.
- Simpler detector design
- Able to use a spherical geometry
- Does not require 39Ar-depleted argon for large detectors
- Neon is clean enough to use for pp solar neutrinos

Disadvantages:

- Lower A^2 reduces coherent scattering enhancement
- Self-shielding from external backgrounds worse than other materials
- Atmospheric argon contains 39Ar, a high rate beta decay isotope (1 Bq/kg)
The DEAP and CLEAN Family of Detectors

DEAP-0:
Initial R&D detector
- 7 kg LAr
- 2 warm PMTs
- At SNOLab 2008

DEAP-1:
- 7 kg LAr
- 2 warm PMTs
- At SNOLab 2008

picoCLEAN:
Initial R&D detector
- 4 kg LAr or LNe
- 2 cold PMTs
- surface tests at Yale

microCLEAN:
- 4 kg LAr or LNe
- 2 cold PMTs
- surface tests at Yale

MiniCLEAN:
- 500 kg LAr or LNe (150 kg fiducial mass)
- 92 cold PMTs
- At SNOLAB mid-2011

DEAP-3600:
- 3600 kg LAr (1000 kg fiducial mass)
- 266 warm PMTs
- At SNOLAB 2012

50-tonne LNe/LAr Detector:
- pp-solar ν, supernova ν, dark matter <10^{-46} cm^2
- At DUSEL ~2016?
MiniCLEAN Goals

- **Demonstrate** the technical features of a 4π single-phase detector using both liquid argon and neon.

- **Characterize** detector response to produce signal and background distributions using combination of calibration and Monte Carlo. Leverage this knowledge in our analysis.

- **Perform** a WIMP dark matter search competitive and complementary to next generation experiments with $O(100 \text{ kg})$ fiducial mass.

- **Develop** the experience and verified simulation tools to design a 50 ton CLEAN experiment.
A Less Simple View

Outer Vessel

Inner Vessel

LAr/LNe

92 PMTs

TPB @ R=43 cm

PMTs @ R=81 cm

Courtesy J. Griego
Optical Cassettes

R5912-02-MOD:
14 dynodes
Pt photocathode underlayer

Courtesy J. Griego
Water Shielding

Outer Vessel

Inner Vessel

Water Shield Tank

Deck

Veto PMTs

Courtesy J. Griego
SNOLAB

Surface Facility

Underground Laboratory

2 km of rock (6000 mwe)

Sudbury, Ontario, Canada
Construction Progress:
Outer Vessel
Construction Progress: Inner Vessel

Courtesy F. Lopez
Construction Progress: Cube Hall

Insert MiniCLEAN here

Courtesy F. Duncan
MiniCLEAN WIMP Analysis

Perform a blind analysis with signal box in three reconstructed observables:

- Energy
- Radius
- Fprompt

Use calibration data, simulation, and systematic uncertainties to optimize the final box.
Energy

- A spherical 4π detector has very uniform energy response.
- We obtain the “electron equivalent” kinetic energy (keVee), as nuclear recoils have $\sim 25\%$ quenching factor.
- Nominal energy region of interest is 20-50 keVee.

Resolution @
20 keVee = 15%
Radius: Position Reconstruction

- No photon in MiniCLEAN can travel from event vertex to a PMT!
- We have developed a hybrid analytic/Monte Carlo based maximum likelihood position reconstruction called ShellFit.
- Includes all major optical effects.
ShellFit: Radial Bias

Average bias [fit - true radius] (mm)

20 keV electrons
ShellFit: Resolution (Cartesian)

Average X resolution (mm)

20 keV electrons

(True radius/439 mm)³
Fprompt

- Designed to be the simplest possible pulse shape discriminant.

- $F_{\text{prompt}} =$ Charge in prompt window (150 ns) divided by total charge. Ranges from 0 to 1.
Fprompt

• Designed to be the simplest possible pulse shape discriminant.

• Fprompt = Charge in prompt window (150 ns) divided by total charge. Ranges from 0 to 1.
Backgrounds

Major:

- 39Ar: 1 Bq per kg of atmospheric argon
- PMT Neutrons
- Rn daughters on surfaces

Sub-dominant:

- External gammas from steel and rock
- External neutrons from rock and cosmic ray spallation
Mitigating Backgrounds

- 39Ar: Cut with Fprompt
- PMT Neutrons: Low activity glass, pull PMTs back from fiducial volume, acrylic shielding, position reconstruction, timing distribution
- Rn daughters on surfaces: Modular design to assemble cassettes in gloveboxes, position reconstruction
- External gammas from steel and rock: Low activity steel, water shield, cut with Fprompt
- External neutrons from rock and cosmic ray spallation: Water shield, active cosmic ray veto.
Controlling Radon

- Goal of 1 decay per m2 per day on the TPB surface.
- Creating a model of Rn deposition to understand how to achieve this goal during assembly.
Neutron Cross-Sections

- Modeling of neutrons is important for detector design and optimization.
- Carefully studying GEANT4 neutron simulations in argon/neon and making new measurements.

Selected Neutron Inelastic Cross Sections on 40Ar

Conclusions
- Optical model has been shown to work very well for medium mass and heavy nuclei (Hodgson, *Nuclear Reactions and Nuclear Structure*).
- Depends strongly on (N-Z)/A.
- Na-22 approximates Ne-20 for now.

Graphs:
- Neutron cross-sections for 20Ne and 22Na.
- Comparison of simulation and experimental data.

Figures:
- Graphs showing cross-sections vs energy and angle.
- Data from Na-22 (NNDC) and Ne-20.

References:
- K.J. Palladino
- S. MacMullin, et al.
Calibration

Developing a calibration plan to understand detector response and model it in our Monte Carlo

Sources:

- 39Ar (natural and spike)
- 57Co
- 22Na
- AmBe
- 83Krm
- d-d neutron generator
- Light injection (visible and UV)
WIMP Sensitivity

![Graph showing WIMP sensitivity with different lines representing various experiments such as XENON10 (2007), CDMS (2008), MiniCLEAN, LUX, CLEAN, Ne, CLEAN, natural Ar, and CLEAN, depleted Ar.](image)

Events / 10 kg / yr
Events / 100 kg / yr
Events / 1000 kg / yr
Schedule

- **September 2010**: Underground infrastructure completed

- **Winter 2010**: Outer vessel in shield tank on stand

- **May 2011**: Inner vessel fabrication completed

- **Summer 2011**: Cassette assembly and installation into inner vessel

- **Fall 2011**: Detector commissioning and initial calibrations

- **Winter 2011**: Liquid argon dark matter run begins (projected lifetime: 2 years, followed by neon run)
Conclusion

• Single phase noble liquid detectors offer a highly scalable option for dark matter and neutrino detection.

• MiniCLEAN extends the DEAP/CLEAN series of detectors to 150 kg fiducial volume with liquid argon and neon.

• Broad R&D program studying Ne/Ar scintillation, cold PMTs, TPB properties, radon deposition, acrylic optics, and neutron cross-sections on argon and neon.

• Will perform a dark matter search and also demonstrate the techniques to be used in a future 50 ton detector.

• Construction is underway, with detector commissioning scheduled for fall 2011.
DEAP/CLEAN Collaborators

University of Alberta
B. Beltran, P. Gorel, A. Hallin, S. Liu, C. Ng, K.S. Olsen, J. Soukup

Boston University
D. Gastler, E. Kearns

Carleton University
M. Bowcock, K. Graham, P. Gravelle, C. Oullet

Harvard University
J. Doyle

Los Alamos National Laboratory

Massachusetts Institute of Technology

National Institute Standards and Technology
K. Coakley

University of New Mexico
M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Matthews, P. Palni

University of North Carolina/TUNL
M. Akashi-Ronquest, R. Henning

University of Pennsylvania
T. Caldwell, J.R. Klein, A. Mastbaum, G.D. Orebi Gann

Queen’s University

SNOLAB Institute
M. Batygov, F.A. Duncan, I. Lawson, O. Li, P. Liimatainen, K. McFarlane, T. O’Malley, E. Vazquez-Jauregi

University of South Dakota
V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang

Syracuse University
M.S. Kos, R.W. Schnee, B. Wang

TRIUMF
P.-A. Amaudruz, A. Muir, F. Retiere

Yale University
W.H. Lippincott, D.N. McKinsey, J.A. Nikkel, Y. Shin