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Question 1X - Relativity

(i) An accelerated, charged particle radiates energy in its instantaneous
rest frame (IRF) at a rate

P0 =
µ0q

2|~aIRF|2

6πc
,

where q is the charge and |~aIRF| is the magnitude of the 3D acceleration in the
IRF. The radiation pattern in the IRF is symmetric under inversion through
the position of the particle. By considering the total 4-momentum of the
radiation emitted in the IRF in a short time interval, and Lorentz transforming,
show that the rate at which energy is radiated is Lorentz invariant. [6]

Hence show that in a general inertial frame, the particle is instantaneously
radiating at a rate

P = −µ0q
2

6πc
aµaµ ,

where aµ is the particle’s acceleration 4-vector. [4]

(ii) A photon of frequency ν propagating along the x-axis of an inertial
reference frame scatters off an electron, with total energy E, moving along the
negative x-direction. Show that the frequency of the scattered photon, ν̄, as a
function of the angle that the photon scatters through, θ, is given by

ν̄ =
ν(E + pc)

E + pc cos θ + hν(1− cos θ)
,

where p is the magnitude of the initial 3-momentum of the electron and h is
Planck’s constant. [8]

If hν < pc, for what angle θ is ν̄ maximised? Determine this maximum
frequency ν̄max. [2]

In an active galactic nucleus, thermal radiation emitted from the accretion
disk at temperature 105 K scatters off free electrons in the corona, each with
kinetic energy 0.2 MeV. Estimate the maximum frequency of the radiation
after scattering once. [4]

In the limit that E � mec
2, where me is the electron mass, and assuming

γhν � mec
2 (where γ is the Lorentz factor of the incident electron), show that

ν̄max ≈ 4νγ2 . [6]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a fluid with uniform density ρ0 and uniform pressure p0 in a
static equilibrium (no gravitational field present). Let the fluid have a kine-
matic viscosity ν and zero bulk viscosity. Starting from the standard form of
the Navier-Stokes equation, show that the dispersion relation for isothermal,
compressible perturbations of the form ei(k·x−ωt) is

ω2 +
4

3
iωνk2 − c2

sk
2 = 0,

where k is the modulus of the vector k. You should provide a suitable definition
of c2

s as part of your answer. [7]

Compute the critical wavelength λcrit in terms of ν and cs that separates
propagating from non-propagating modes. [3]

(ii) Consider an incompressible fluid with uniform density ρ0 and uniform
pressure p0 that is in a static equilibrium in a frame of reference that is rotating
with constant angular velocity Ω. Let the fluid have a kinematic viscosity ν
and zero bulk viscosity. Show that perturbations satisfy

∂ δw

∂t
= 2(Ω · ∇)δu + ν∇2δw,

where δw is the perturbation in vorticity corresponding to the perturbation in
fluid velocity δu. [5]

In the case where ν = 0 and the z-axis is aligned with the direction of Ω,
show that plane wave perturbations obey the dispersion relation

ω = ±2Ω
|kz|
k
. [8]

Show that the modes of the plane wave perturbations are transverse. [2]

Without detailed calculation, write down the corresponding dispersion re-
lation for the case ν 6= 0 and interpret the behaviour. [5]

[The Navier-Stokes equation for an isothermal fluid in a frame of reference
rotating at angular velocity Ω is

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ 2u×Ω− 1

2
∇
[
(Ω× r)2

]
+ ν

[
∇2u +

1

3
∇(∇ · u)

]
.

]

TURN OVER...
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Question 3X - Cosmology

(i) Assume that the Universe is spatially flat and described by the Friedmann–
Robertson–Walker line element,

ds2 = c2dt2 −R2(t)[dχ2 + χ2(dθ2 + sin2 θdφ2)] ,

where R(t) is the scale factor. Show that the angular-diameter distance, DA(z),
and luminosity distance, DL(z), to an object at redshift z are given in terms
of the Hubble parameter H(z) by

DA(z) =
c

(1 + z)

∫ z

0

dz′

H(z′)
, DL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
, (∗)

independent of the matter content of the Universe. [10]

(ii) The deceleration parameter, q(t), and jerk parameter, j(t), in a Friedmann–
Robertson-Walker (FRW) universe with scale factor R(t) are defined as

q = −R d2R/dt2

(dR/dt)2
, j = R2 d

3R/dt3

(dR/dt)3
.

Show that these quantities can be written as

q(z) = −1 +
(1 + z)

2

(H2)′

H2
, (†)

j(z) = 1− (1 + z)
(H2)′

H2
+

(1 + z)2

2

(H2)′′

H2
, (††)

where H is the Hubble parameter and primes denote differentiation with re-
spect to redshift z. [10]

Show that in a spatially-flat FRW universe consisting of non-relativistic
matter and a cosmological constant, the Hubble parameter is

H(z) = H0

[
Ωm(1 + z)3 + ΩΛ

]1/2
,

where Ωm and ΩΛ = 1−Ωm are the present-day densities contributed by matter
and the cosmological constant, respectively, in units of the critical density and
H0 is the Hubble constant. [3]

Hence show that in such a universe the values of q and j at the present day
are given by

q0 =
3

2
Ωm − 1 , j0 = 1 . [2]
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Outline, without detailed proof, how the relations (†) and (††) can be used
to derive the following general approximation for the luminosity distance DL(z)
in a spatially-flat universe, given by (∗) in Part (i):

DL(z) =
cz

H0

[
1 +

1

2
(1− q0)z − 1

6
(1− q0 − 3q2

0 + j0)z2 +O(z3)

]
.

[3]

A Type-1a supernova is observed at redshift z = 0.5. Will it appear fainter
in a universe with: (a) Ωm = 0.3, ΩΛ = 0.7; or (b) Ωm = 1, ΩΛ = 0? The
Hubble constant is the same in both cases. [2]

TURN OVER...
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Question 4Y - Structure and Evolution of Stars

(i) A star is composed of H (mass fraction X = 0.7), He (mass fraction
Y = 0.3), and negligible amounts of heavier elements. Calculate the mean
molecular weight immediately above and below the radius in the star where
hydrogen and helium transition from fully neutral to fully ionized. [6]

Assume that the transition between ionized and neutral hydrogen and he-
lium takes place over a very small radial distance, such that the pressure and
temperature can be considered constant across the zone. What does this imply
about the dynamical stability of the zone? [4]

(ii) An eclipsing-binary system has a parallax of 0.1 arcsec (with negligible
error) and consists of two Solar-type stars with a semi-major axis of 500R�.
The period is known very accurately. What is the angular size of each of the
stars and of the semi-major axis? Give your answer in units of arcsec. [1]

If you can measure angles on the sky with a 1σ root mean square accuracy
of 0.01 arcsec, what is the percentage accuracy of the measurement of the
semi-major axis and of the radius of each star? [2]

If we now include an error in the measurement of the parallax of σΠ =
0.01 arcsec, what is the percentage accuracy in the mass of the system? [7]

Assume that the stars emit as blackbodies with an effective temperature
Teff ' 5800 K and with a spectral radiance given by

Fν(T ) =
2hν3

c2

1

e
hν
kBT − 1

,

where ν is the frequency, T is the temperature, kB is Boltzmann’s constant, h
is Planck’s constant, and c is the speed of light. If you measure the flux ratio
between log10 (ν/Hz) = 14.0 and log10 (ν/Hz) = 15.0 with an accuracy of 10%,
with what percentage precision can you determine the value of Teff? [10]
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Question 5Z - Statistical Physics

(i) Write down the equation of state for an ideal gas, and an expression for
its internal energy in terms of the heat capacity at constant volume, CV . [3]

Starting from the first law of thermodynamics, find a relation between the
heat capacity at constant pressure, Cp, and CV . [4]

Hence give an expression for γ = Cp/CV . [2]

Describe the meaning of an adiabatic process. [1]

(ii) Starting from the first law of thermodynamics, and using your results
from Part (i) or otherwise, derive the equation for an adiabatic process in the
pressure–volume (p, V ) plane for an ideal gas. [4]

Consider a simplified Otto cycle (an idealised petrol engine) involving an
ideal monatomic gas and consisting of the following four reversible steps:

A→ B: adiabatic compression from volume V1 to volume V2 < V1;

B → C: heat Q1 in at constant volume;

C → D: adiabatic expansion from volume V2 to volume V1;

D → A: heat Q2 out at constant volume.

Sketch the cycle in the (p, V ) plane and in the temperature–entropy (T, S)
plane. [6]

Derive an expression for the efficiency, η = W/Q1, where W is the work
done by the gas, in terms of the compression ratio r = V1/V2. [8]

How can the efficiency be maximized? [2]

TURN OVER...
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Question 6X - Principles of Quantum Mechanics

(i) A group G of transformations acts on a quantum system with Hilbert
space H. Briefly explain why the Born rule implies these transformations may
be represented by operators U(g) : H → H obeying

U †(g)U(g) = 1H ,

U(g1)U(g2) = eiφ(g1,g2) U(g1 · g2) ,

for all g1, g2 ∈ G, where φ(g1, g2) ∈ R. Note that g1 ·g2 denotes the composition
of g1 and g2. [4]

What additional property does U(g) have when G is a symmetry of the
Hamiltonian? [3]

Show that symmetries correspond to conserved quantities. [3]

(ii) The Coulomb Hamiltonian describing the gross structure of the hydro-
gen atom is invariant under reversal of the direction of time, t 7→ −t. Suppose
we try to represent time reversal by a unitary (linear) operator T obeying
U(t)T = TU(−t), where U(t) is the time-evolution operator. Show that this
would imply that hydrogen has no stable ground state. [8]

An operator A is anti -linear if

A(a|α〉+ b|β〉) = a∗A|α〉+ b∗A|β〉 ,

for all |α〉, |β〉 ∈ H and all a, b ∈ C. It is further anti -unitary if |α′〉 = A|α〉
and |β′〉 = A|β〉 satisfy

〈α′|β′〉 = 〈α|β〉∗

for all |α〉, |β〉 ∈ H. Show that the above instability is avoided if time reversal
is instead represented by an anti-unitary operator satisfying U(t)T = TU(−t). [6]

Given that the action of such an anti-unitary operator T on the position-
basis states, {|x〉}, is

T |x〉 = |x〉 ,

show that the action on the position-space wavefunction is equivalent to com-
plex conjugation. [3]

Show further that the action on the momentum-basis states, {|p〉}, is

T |p〉 = | − p〉 . [3]
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Assume that a test particle moves in the gravitational potential of a
point mass M . Show that the specific angular momentum h of the test particle
is conserved. [2]

Show further that the orbit can be described by the equation

1

r
=
GM

h2
(1 + e cosφ),

where r is the distance to the point mass, φ is an angle in the plane of the
orbit and e is a constant. [5]

Deduce that there is no closed orbit that reaches r < h2/(2GM). [3]

(ii) The gravitational potential of a black hole of mass M can be approxi-
mated by Φ = −GM/(r− rs), where r is the distance to the black hole and rs

is a constant characteristic radius. Show that a test particle in orbit around
the black hole with specific angular momentum h satisfies

1

2
ṙ2 +

h2

2 r2
− GM

r − rs

= E,

where E is a constant and the overdot denotes a derivative with respect to
time. [2]

Using this equation, or otherwise, determine the radius of the smallest
stable circular orbit. [10]

Suppose a spacecraft to be in circular orbit at 2.5rs from a black hole.
Assume the spacecraft fires its rockets to provide a small radial impulse either
inwards or outwards. For each case describe the subsequent trajectory, and
comment on the ultimate fate of the spacecraft. [8]

TURN OVER...
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Question 8Z - Topics in Astrophysics

(i) Explain why the tidal interaction between a moon and a rapidly spin-
ning host planet could result in the moon being ‘evaporated’ (i.e., becoming
unbound from the planet). [3]

Consider a planet with the properties of the present day Earth orbiting a
solar mass star, but with the actual Moon replaced by a small satellite that
is formed well within the Hill sphere of the planet. Estimate the maximum
mass of a satellite that could eventually be evaporated by this mechanism and
comment on this answer in relation to the ultimate fate of the actual Moon.
[You may assume if necessary that the mass of the actual Moon is ∼ 1/80 that
of the Earth.] [7]

(ii) A dust grain of radius a and internal density ρ = 2000 kg m−3 is located
at distance R = 1 au from a star with solar mass and luminosity. Derive an
expression for the net outward acceleration, fo, of the dust grain resulting
from the effects of both gravity and radiation pressure from the star. You may
assume that the dust grain behaves like a perfect black body. [6]

Determine the grain size, ab, for which fo = 0 and sketch fo as a function
of a. [4]

What is the terminal velocity of outflowing grains of size 0.5ab that origi-
nate at rest at 1 au? [3]

A cloud of dust particles has a size distribution such that the fraction of
particles with radii in the range a to a + da is proportional to a−3.5da over
a range such that the maximum dust size is much less than ab. This cloud
is released at 1 au from a star with solar properties following a planetesimal
collision event. Show that if the dust particles are initially at rest, then at a
long time after the event, the distance from the star, R, attained by grains of
size a is related to a according to R ∝ a−0.5. [3]

How does the total mass of dust at a given time that is located between R
and R + dR scale with R? [4]

END OF PAPER
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Question 1X - Relativity

(i) Let xµ(λ) be a geodesic in spacetime with affine parameter λ. Starting
from the geodesic equation in the form

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0 ,

show that
d

dλ

(
gτµ

dxµ

dλ

)
=

1

2

∂gνρ
∂xτ

dxν

dλ

dxρ

dλ
. (∗)

[7]

Comment on the implications of this result for spacetimes with symmetries
such that the metric gµν is independent of some coordinate. [3]

(ii) Consider a static spacetime with line element of the form

ds2 = g00dt
2 + gijdx

idxj ,

where x0 = t, the spatial indices (e.g., i and j) run from 1 to 3 and g00 and gij
depend only on the {xk}. An implicit summation over repeated spatial indices
should be understood in this part of the question. Starting from the geodesic
equation in the form of (∗) from Part (i), show that

g00
dt

dλ
= const.

and, for the case of a null geodesic,

d

dλ

(
gij
dxj

dλ

)
=
g00

2

∂

∂xi

(
gjk
g00

)
dxj

dλ

dxk

dλ
.

[9]

Hence show that

d

dt

(
γij
dxj

dt

)
=

1

2

∂γjk
∂xi

dxj

dt

dxk

dt
,

where γij ≡ −gij/g00. [4]

Now consider any null curve xµ(u) in this static spacetime, parameterised
by a general parameter u and passing through points with spatial coordinates
xi = ai at u = 0 and xi = bi at u = 1. Show that the elapsed coordinate time
is

∆t =

∫ 1

0

√
γij
dxi

du

dxj

du
du .

[2]
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Show further that null curves for which ∆t is extremal are geodesics in

spacetime. [Hint: apply the Euler–Lagrange equations to L ≡
√
γij

dxi

du
dxj

du
and

note that dt/du = L.] [5]

TURN OVER...
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider the steady-state, spherically-symmetric accretion of matter
from an infinite, uniform medium onto a central gravitating object with mass
M . Neglecting the self-gravity of the accreting matter, and adopting a barotropic
equation of state, show that(

u2

c2
s

− 1

)
d lnu

dr
=

2

r

(
1− rs

r

)
, (∗)

where r is the radial distance from the object, u(r) is the inward-directed radial
velocity, cs(r) is the sound speed, and rs = GM/(2c2

s). [7]

Clearly state the boundary condition for the accretion problem. [1]

Sketch the corresponding solution curves of (∗) on the (r/rs, u/cs)-plane. [2]

(ii) Consider a simple model for the solar wind consisting of a steady-state,
spherically-symmetric, isothermal outflow of fully ionized hydrogen from the
Sun. Let u(r) be the outward-directed velocity of the flow, cs the sound speed,
and define rs = GM�/c

2
s. Assuming that the outflow is launched from close

to the Sun with a velocity that is significantly subsonic, sketch the possible
solution curves for this problem on the (r/rs, u/cs)-plane. [3]

The Parker Wind solution makes a transition from subsonic to supersonic
flow. Show that in this case,(

u

cs

)2

− 2 ln

(
u

cs

)
= 4 ln

(
r

rs

)
+

4rs
r
− 3.

[4]

Adopting a temperature of T = 106 K, calculate the location of the sonic
point and proceed to find an approximate value for the speed of the Parker
Wind at the location of the Earth. [6]

Show that, at very large distances from the Sun, the pressure of the Parker
Wind obeys p ∝ 1/(r2

√
ln(r/rs)). [4]

The ‘solar breeze’ solution remains subsonic at all radii. Given that the
interstellar medium has an extremely small pressure, carefully explain why the
Parker Wind is a viable description of the solar wind whereas the ‘solar breeze’
solution is not. [3]
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Question 3X - Cosmology

(i) The contribution of relativistic particles of species i in thermal equi-
librium at temperature T to the energy density of the Universe, ρic

2, is given
by

ρic
2 = gi

4πc

h3

∫ ∞
0

p3dp

[exp (pc/kBT )± 1]
,

where p is the 3-momentum, gi is the number of spin states and the + sign
corresponds to fermions and the − sign to bosons. Show that the energy
densities are given by

ρic
2 =

(gi
2

)
aT 4 for bosons ,

ρic
2 =

7

8

(gi
2

)
aT 4 for fermions ,

where [5]

a =
8π5k4

B

15h3c3
.

We can define an effective statistical weight, geff(Tγ), for relativistic parti-
cles as a function of the photon temperature Tγ:

geff(Tγ) =
∑

bosons

gi

(
Ti
Tγ

)4

+
∑

fermions

7

8
gi

(
Ti
Tγ

)4

, (∗)

which allows for the possibility that particles are described by a thermal dis-
tribution function with a temperature Ti that may differ from the photon
temperature. Sketch geff as a function of photon energy kBTγ over the range
0.1 MeV to 300 GeV and comment on notable features. [5]

[You may assume that∫ ∞
0

xν−1

exp(x)− 1
dx = Γ(ν)ζ(ν) ,

∫ ∞
0

xν−1

exp(x) + 1
dx =

(
1− 21−ν)Γ(ν)ζ(ν) ,

where Γ and ζ are the gamma and zeta functions and Γ(4)ζ(4) = π4/15.]

(ii) The distribution function, f , of a homogenous species of collisionless
particles in a Friedmann–Robertson–Walker (FRW) universe satisfies the col-
lisionless Boltzmann equation

TURN OVER...
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∂f

∂t
− pṘ

R

∂f

∂p
= 0 , (∗∗)

where R is the scale factor, overdots denote differentiation with respect to time
t and p is the 3-momentum satisfying E2 = p2c2 + m2c4, where m and E are
the rest mass and energy of the particle. For a freely falling particle in a FRW
background, p ∝ R−1. If neutrinos are highly relativistic at the time that they
go out of thermal equilibrium, show that the neutrino distribution function of
each flavour is

f =
1

h3

1

[exp (pc/kBTν) + 1]
,

with neutrino temperature Tν ∝ R−1, and that this satisfies (∗∗) irrespective
of the neutrino mass m. [10]

Electrons and positrons annihilate at a temperature kBTγ ∼ 1 MeV, boost-
ing the photon temperature Tγ. Show that after e+e− annihiliation, the neu-
trino temperature is related to the photon temperature via

Tν ≈
(

4

11

)1/3

Tγ . [5]

In the Standard Model of particle physics, calculate the effective statistical
weight geff , given by (∗) of Part (i), before and after e+e− annihiliation. [5]
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Question 4Y - Structure and Evolution of Stars

(i) The following three approximate relations apply to massive stars on the
main sequence:

(a) the mass–luminosity relation

log

(
L

L�

)
≈ 0.78 + 2.76 log

(
Mi

M�

)
,

where L is luminosity, and Mi is the initial mass;

(b) the mass-loss rate–luminosity relation

log

(
dM

dt

)
≈ −12.76 + 1.30 log

(
L

L�

)
,

where dM/dt is in M� yr−1; and

(c) the main-sequence lifetime–mass relation

log τMS ≈ 7.72− 0.66 log

(
Mi

M�

)
,

where τMS is the main sequence lifetime in years.

Use these relations to calculate the fraction of the initial mass that is lost by
massive stars with Mi = 25, 40, 60, 85, and 120M� before they evolve off the
main sequence. [6]

A star with Mi = 85M� has a convective core that contains 83% of the
stellar mass. Calculate the time after the star appears on the main sequence
at which the products of nuclear burning will appear at the surface. [2]

How would such a star be classified at this time? [2]

(ii) If energy transport within a star is by radiative diffusion, the luminosity
L(r) at some radius r within the star can be written as

L(r) = −4πr2 16σ

3

T (r)3

ρ(r)κ(r)

dT (r)

dr
,

where ρ is the density, T is the temperature, σ is the Stefan-Boltzmann con-
stant, and the opacity κ is given by

TURN OVER...

7



κ(r) ∝ ρ(r)T (r)−3.5 .

From these two equations show, using homology arguments, that as a pre-main
sequence star contracts its luminosity changes with temperature according to
the relation

L ∝ T
4/5
eff . [14]

The path taken by a contracting star as it approaches the main sequence
in the H-R diagram is called the Henyey track. Computer calculations show
that L ∝ T

4/5
eff is a satisfactory approximation of the Henyey tracks of massive

stars, but becomes a progressively poorer fit to the tracks of stars with masses
M <∼ 2M�. What conclusions can you draw from this statement? [6]
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Question 5Z - Statistical Physics

(i) What systems are described by microcanonical, canonical and grand
canonical ensembles? [5]

Under what conditions is the choice of ensemble irrelevant? [2]

Define the partition function and describe how it can be used to determine
thermodynamic quantities of a system. [3]

(ii) In a simple model a meson consists of two quarks of mass m bound
through a linear potential, U(r) = α|r|, where r is the relative displacement of
the two quarks and α is a positive constant. You are given that the classical
(non-relativistic) Hamiltonian for the meson is

H(P,R,p, r) =
P2

2M
+

p2

2µ
+ α|r| ,

where M = 2m is the total mass, µ = m/2 is the reduced mass, P is the total
momentum, p = µdr/dt is the internal momentum, and R is the centre of
mass position. Show that the partition function for a single meson in thermal
equilibrium at temperature T in a three-dimensional volume V can be written
as Z1 = ZtransZint, where

Ztrans =
V

(2π~)3

∫
d3P e−β|P|

2/(2M) ,

Zint =
1

(2π~)3

∫
d3rd3p e−β|p|

2/(2µ)e−βα|r| ,

with β = 1/(kBT ). [3]

Evaluate both Ztrans and Zint in the large volume limit (βαV 1/3 � 1). [6]

What is the average separation of the quarks within the meson at temper-
ature T? [3]

Now consider an ideal gas of N such mesons in a three-dimensional volume
V . Calculate the total partition function of the gas. [3]

What is the heat capacity CV of this system? [5]

[You may assume that
∫ +∞
−∞ e−c x

2
dx =

√
π/c.]

TURN OVER...
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Question 6X - Principles of Quantum Mechanics

(i) Let {|n〉} be a basis of eigenstates of a non-degenerate Hamiltonian
H, with corresponding eigenvalues {En}. Show that the energy levels of the
perturbed Hamiltonian H+λ∆H, correct to second order in the dimensionless
constant λ, are

En(λ) = En + λ〈n|∆H|n〉+ λ2
∑
m6=n

|〈m|∆H|n〉|2

En − Em
+O(λ3) .

[10]

(ii) A particle of mass m travels in one dimension under the influence of
the perturbed harmonic-oscillator potential

V (X) =
1

2
mω2X2 + λ ~ω

X3

L3
,

where ω is a frequency and L =
√
~/(2mω) is a length scale. Show that to first

order in λ, all energy levels coincide with those of the unperturbed harmonic
oscillator. [5]

Calculate the energy of the ground state to second order in λ. [12]

Does perturbation theory in λ converge for this potential? Briefly explain
your answer. [3]

[You may wish to use the raising and lowering operators of the harmonic os-
cillator,

A† =
1√

2m~ω
(mωX − iP ) and A =

1√
2m~ω

(mωX + iP ) ,

respectively.]
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Describe briefly the process of dynamical friction, and outline the phys-
ical arguments that lead to the following dynamical friction formula for the
acceleration on an object of mass M moving through a sea of particles with
mass density ρ:

dv

dt
∝ ρ

M

v2
. [5]

Describe briefly the effect of dynamical friction on globular clusters, and
the observational evidence for tidal stripping of clusters by their host galaxies. [2]

Show that tidal stripping occurs outside the radius rt within which the
mean density of the cluster is approximately equal to that of the host galaxy
inside the orbit of the cluster. [3]

(ii) A star in the disk of the Milky Way has a circular orbit with radius
R and velocity V . The Galactic longitude of the star as seen from the Sun is
l, and the distance from the Sun to the star is d. Show that the radial and
transverse components of the star’s motion with respect to the Local Standard
of Rest at the Sun’s Galactic radius R0 are

Vr =

(
V

R
− V0

R0

)
R0 sin l, Vt =

(
V

R
− V0

R0

)
R0 cos l − V

R
d,

where V0 is the circular speed at the position of the Sun. [6]

If d� R0 show that these expressions reduce to

Vr ≈ Ad sin 2l, Vt ≈ (A cos 2l +B) d,

where A and B are the Oort constants. [7]

Suppose that the mass distribution of the Milky Way can be represented
by the density distribution

ρ = ρc

(rc

r

)α
, α < 3,

where r is the distance to the Galactic centre and ρc, rc and α are constants.
Calculate the Oort constants for this mass distribution. [5]

If observations of stars at l = 45◦ indicate that Vr/Vt = −1, deduce the
value of the index α. [2]

TURN OVER...
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Question 8Z - Topics in Astrophysics

(i) The velocity dispersion of stars in the solar neighbourhood increases
with stellar age, t, in proportion to t0.33. Suggest, without calculation, a
process that could increase the stellar velocity dispersion with age and suggest
candidates for driving this process. [3]

The Gaia satellite has found that stars that host hot Jupiters have an
average velocity dispersion of 36 km s−1, as compared to an average value of
43 km s−1 for stars that do not host hot Jupiters. Discuss possible explanations
for this observation. [7]

(ii) An intermediate mass black hole of mass 103M� is located in the centre
of a cluster and dominates the gravitating mass out to a distance of 0.5 pc. A
solar-mass main-sequence star in the cluster follows an orbit with apocentre at
0.2 pc. Estimate how close the star must approach the black hole at pericentre
in order that the total tidal energy deposited in the star over its main-sequence
lifetime (4.5 Gyr) is comparable with its internal gravitational binding energy. [9]

Explain whether you expect the star’s evolution to be affected by tidal
effects in this case. [3]

Are relativistic effects important at pericentre? [2]

Do you expect the star to be able to support habitable planets? [2]

At the end of the star’s main-sequence lifetime, it becomes a red giant,
expanding to a radius of around 1 au. Explain how tidal effects from the black
hole would affect the star during this evolutionary stage. [2]

Would there be any observable consequences of this interaction? [2]

[You may assume that the tidal energy injected into a star of mass M2, radius
R2 when it approaches within a distance aperi of a mass M1 is given by Etidal ∼
GM2

1R
5
2/a

6
peri.]

END OF PAPER
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Question 1X - Relativity

(i) A massive particle moves freely in the equatorial plane (θ = π/2) outside
a non-rotating black hole of mass M , with line element

ds2 =

(
1− 2µ

r

)
c2dt2 −

(
1− 2µ

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
,

where µ ≡ GM/c2. Show that(
1− 2µ

r

)
ṫ = k and r2φ̇ = h ,

where k and h are constants and overdots denote differentiation with respect
to proper time. [2]

In the case k > 1, the particle can reach r = ∞ asymptotically. Find the
speed there, v∞, as measured by an observer in the equatorial plane at fixed r
and φ. Express your answer in terms of k. [4]

Show further that the impact parameter b for such motion is

b =
h

c
√
k2 − 1

.
[4]

(ii) For the massive particle in Part (i), show that the radial motion is
determined by

1

2
ṙ2 + Veff(r) =

1

2
c2
(
k2 − 1

)
,

where the effective potential

Veff(r) = −µc
2

r
+

h2

2r2

(
1− 2µ

r

)
.

[4]

Sketch the effective potential for several representative values of h/(µc)
and explain why, no matter how large h, a particle incident from infinity with
sufficiently large k will be captured by the black hole. [5]

By considering the maximum value of Veff(r), or otherwise, show that the
condition for a particle with speed v∞ � c as r → ∞ to be captured by the
black hole is that the impact parameter

b <
4µc

v∞
. [7]

Determine the equivalent bound on the impact parameter for capture in
the limit v∞ → c. [4]
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Question 2Y - Astrophysical Fluid Dynamics

(i) The expressions of the conservation of mass and angular momentum for
a geometrically-thin accretion disk are

∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0,

∂

∂t
(RΣuφ) +

1

R

∂

∂R
(ΣR2uφuR)− 1

R

∂

∂R

(
νΣR3 dΩ

dR

)
= 0,

where Σ is the surface density, (uR, uφ) describes the radial and azimuthal
components of the velocity field, respectively, R is radial distance, t is time, ν
is kinematic viscosity and Ω is angular velocity. Show that, for accretion onto
a point mass M ,

uR = − 3

R1/2Σ

∂

∂R
(νΣR1/2). [7]

Show that the local mass-accretion rate is

Ṁ(R) = 6πR1/2 ∂

∂R
(νΣR1/2). [3]

(ii) Using expressions from Part (i), show that the surface density of a
geometrically-thin accretion disk around a point mass evolves according to

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(νΣR1/2)

]
. (†)

[3]

Consider a simple model in which viscosity is given by ν = ν0R, where ν0

is a constant. Define x = R1/2. Show that (†) can be recast in a form

∂Ψ

∂t
=

3ν0

4

∂2Ψ

∂x2
,

where you should appropriately define the variable Ψ. [6]

Show that the local mass-accretion rate Ṁ = 3π ∂Ψ/∂x. [3]

At time t = 0, a mass m is dumped into a very narrow orbiting ring around
the central object at radius R = R0. Assuming that it evolves according to
the simple viscous model considered above, derive an expression for the mass-
accretion rate onto the central object (at R = 0) at subsequent times. [6]

TURN OVER...
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Sketch this mass-accretion rate and comment on the behaviour at early
and late times. [2]

[ You may assume without proof that the Green’s function for the equation
∂y/∂t = D∂2y/∂x2 is G(x0, x; t) = 1√

4πDt
e−(x0−x)2/(4Dt). ]
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Question 3X - Cosmology

(i) Consider a spatially-flat Friedmann–Robertson–Walker universe de-
scribed by the line element

ds2 = c2dt2 −R2(t)[dχ2 + χ2(dθ2 + sin2 θdφ2)] ,

where R(t) is the scale factor. Show that the proper size of the particle horizon
is given by

dph(t) = cR(t)

∫ t

0

dt′

R(t′)
.

[2]

If R(t) ∝ tp, with p < 1, show that

dph(t) =
ct

1− p
. (∗)

[1]

Assume that the universe is dominated by matter with an equation of state
relating pressure, P , and density, ρ, by

P = wρc2 ,

where w is a constant. Find the value of w that corresponds to the critical
index p = 1 in (∗). [5]

Briefly discuss the significance of this result in the context of inflationary
cosmology. [2]

(ii) Consider a spatially-flat universe that goes through an inflationary
phase of exponential expansion with constant Hubble parameterHI , i.e., R(t) ∝
eHI t, over the time interval ti < t < tf. Using results from Part (i), show that
the particle horizon during the inflationary phase grows as

dph(t) =
c

HI

(
eHI(t−ti) − 1

)
, ti < t < tf . [5]

Discuss how this result might alleviate the horizon problem of standard hot
big bang cosmology. [5]

In an alternative universe, the energy density is dominated by a scalar field
φ that obeys the equations of motion (in Planck units)

TURN OVER...
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φ̈+ 3Hφ̇ = −∂V
∂φ

,

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
,

where overdots denote differentiation with respect to time t and V (φ) is the
potential. Show that these equations are satisfied exactly if

V (φ) = V0 exp

(
−
√

2

p
φ

)
,

φ =
√

2p ln

(
t

√
V0

p(3p− 1)

)
,

and that the scale factor varies as a power law R(t) ∝ tp. [8]

For what values of p does inflation occur in this case? [2]
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Question 4Y - Structure and Evolution of Stars

(i) A star of mass M and radius R is in hydrostatic equilibrium. Derive
an integral expression for the gravitational potential energy of the star, U . [4]

If the density is uniform, derive U in terms of the mass, M , and radius, R,
of the star and show that for a given M , U is proportional to 1/R. [3]

Show that the total thermal energy of the star, K, is given by

K = 4π

∫ R

0

3

2
P r2 dr ,

where P is the pressure, and r is the radial distance from the centre of the
star. [3]

(ii) In a 10M� star the 1M� core collapses to produce a Type II supernova.
Assume that 100% of the energy released by the collapsing core is converted to
neutrinos and that 1% of the neutrinos are absorbed by the overlying envelope
to power the ejection of the supernova remnant. Estimate the final radius of
the stellar remnant, assuming that the energy liberated is just enough to eject
the remaining 9M� to infinity. [Hint: You will need to assume an appropriate
density structure in the star’s envelope.] [12]

Do you consider the assumption made above to be consistent with obser-
vations of supernova remnants? [2]

What is the typical velocity of the ejecta, if the energy absorbed by the
envelope is 1051 erg? [3]

The detection of a Type II supernova in a globular cluster is announced.
Why might one be skeptical of this claimed discovery? [3]

TURN OVER...
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Question 5Z - Statistical Physics

(i) A gas of non-interacting particles has energy–momentum relationship

E = A(~k)α, (∗)

for some constants A > 0 and α > 0, and spin degeneracy gs. Show that the
density of states in a d-dimensional volume V with d > 2 is given by

g(E)dE = CV Ed/α−1,

where C is a constant that you should determine. [You may denote the surface
area of a unit (d− 1)-dimensional sphere by Sd−1.] [8]

Write down the Bose–Einstein distribution for the average number of iden-
tical Bosons in a state with energy Er > 0 in terms of β = 1/(kBT ) and
chemical potential µ. [2]

(ii) Explain why µ < 0 for the Bose–Einstein distribution of Part (i). [2]

Using your results from Part (i), or otherwise, show that an ideal quantum
Bose gas with the energy–momentum relationship (∗) has

p V = DE ,

where p is the pressure and D is a constant that should be determined. [9]

For such a Bose gas, write down an expression for the number of particles
that do not occupy the ground state, and use this to determine the values of α
for which there exists a Bose–Einstein condensate at sufficiently low tempera-
tures. [9]
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Question 6X - Principles of Quantum Mechanics

(i) A quantum system with total angular momentum j1 is combined with
another of total angular momentum j2. What are the possible values of the
total angular momentum j of the combined system? [2]

For a given j, what are the possible values of angular momentum along any
axis? [1]

Consider two systems with j1 = j2. Explain why all the states with j =
2j1 − 1 are antisymmetric under exchange of the angular momenta of the two
subsystems, while all the states with j = 2j1 − 2 are symmetric. [7]

(ii) Consider the systems in Part (i) for the case j1 = j2 = 1. Construct the
state with zero total angular momentum in terms of the angular momentum
states |j1,m1〉 and |j2,m2〉 of the individual systems. [6]

An exotic particle X of spin 0 and negative intrinsic parity decays into a
pair of indistinguishable particles Y . Each Y particle has spin 1 and the decay
process conserves parity. Find the probability that the total spin of the two
Y s along some given axis is observed to be ~ and their directions of travel
with respect to this axis are within the angular range π/4 and 3π/4. [You may
assume the spherical harmonic function Y −1

1 (θ, φ) ∝ sin θe−iφ.] [14]

[You may wish to make use of the following action of the angular momentum
raising and lowering operators:

J±|j,m〉 = ~
√
j(j + 1)−m(m± 1)|j,m± 1〉 . ]

TURN OVER...
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) The phase space density function f(x,v) for a distribution of particles
with equal mass m is a function of E alone, where E = 1

2
v2 + Φ(x) and Φ(x)

is the gravitational potential. Show that f(E) is a solution of the collisionless
Boltzmann equation. [4]

Suppose E = −E + Φ0 and Ψ = −Φ + Φ0, where Φ0 is a constant chosen
such that f(E) > 0 for E > 0 and f(E) = 0 for E ≤ 0. Show that the mass
density of a spherical system can be written as

ρ(Ψ) = 25/2 πm

∫ Ψ

0

f(E)
√

Ψ− E dE .
[6]

(ii) Using the notation in Part (i), the distribution function f(E) of the
spherical system has the form

f(E) = F En−3/2 for E > 0,

= 0 for E ≤ 0,

where F is a constant and n is a positive integer. Using the results of Part (i),
or otherwise, show that the potential Ψ satisfies

1

r2

d

dr

(
r2 dΨ

dr

)
+4π GC Ψn = 0, (∗)

where C is a constant that depends on F and n, an expression for which should
be given. [9]

If n = 5 and s = r
√

4πGCΨn−1
0 , where Ψ0 = Ψ(0), show that

Ψ =
Ψ0√

1 + s2/3

is a solution to (∗). [4]

Hence show that the density is non-zero everywhere and that the total mass
is finite. [2]

Calculate the total mass. [5]

[For a spherically symmetric function F (r), ∇2F = 1
r2

d
dr

(
r2 dF

dr

)
.]
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Question 8Z - Topics in Astrophysics

(i) Consider planetesimals that form in a protoplanetary disk at a time tf
after the formation of the star and its disk. Derive a constraint on tf for heating
due to short-lived radionuclides to lead to the melting of planetesimals with
radius 50 km. You may assume that the mass fraction of 26Al in planetesimal-
forming solids at t = 0 is X0 = 10−7, the energy per decay of 26Al is ε = 10−12 J,
the half-life of 26Al is t1/2 = 105 yr, and the enthalpy of fusion of rock is
∆Hf = 106 J kg−1. You can neglect the energy cost of heating the planetesimals
to the point of melting. [9]

Justify any assumptions you have made for heat transport in the planetesi-
mals. You may assume that the thermal diffusivity of rock is D = 10−6 m2 s−1. [1]

(ii) Using the same assumptions about physical properties as in Part (i)
where necessary, calculate the minimum radius, Rmin, for a planet to melt due
to the gravitational potential energy released during its accretion. You may
assume a planet mass–radius scaling of M ∝ R2 in a range that includes the
Earth, where radius is defined by the extent of the rock-dominated part of the
planet excluding any atmosphere. [5]

Determine whether a planet of size Rmin is likely to be able to retain a
steam atmosphere. You may assume the atmosphere to be isothermal with
T = 1000 K. [4]

Consider an Earth-like planet immediately after its formation. This planet
is composed of 1% water by mass that entirely partitions into an isothermal
1000 K steam atmosphere. Determine the height in the atmosphere at which
the pressure is 1 mbar. [9]

Assuming this planet could be observed in transit immediately following its
formation, what is the increase in transit depth due to the steam atmosphere?
You may assume that an optical depth of unity is reached at a pressure of
1 mbar. [2]

END OF PAPER
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Question 1X - Relativity

(i) A beam of photons, each with 4-momentum pα, has a photon number
density n in some inertial frame in Minkowski spacetime. By considering the
energy density, momentum density and the flux of momentum, show that the
energy–momentum tensor is

Tαβ =
nc2

E
pαpβ ,

where E is the energy of each photon. [5]

Two photons in the beam are separated by distance ` along the direction of
the beam. Determine their separation and energy in an inertial frame moving
at relative velocity βc in the direction of the beam, and hence show that n/E
is Lorentz invariant. [5]

(ii) The Schwarzschild solution for a massM expressed in outgoing Eddington–
Finkelstein coordinates is

ds2 =

(
1− 2µ

r

)
c2dt∗2 + 4

µc

r
dt∗dr −

(
1 +

2µ

r

)
dr2 − r2

(
dθ2 + sin2 θdφ2

)
,

where µ = GM/c2. By introducing the alternative time coordinate u ≡ ct∗−r,
show that the transformed line element is

ds2 =

(
1− 2µ

r

)
du2 + 2dudr − r2

(
dθ2 + sin2 θdφ2

)
. (∗)

[3]

Now consider an extension of the line element (∗) in which the mass M
depends on u. Find the connection coefficients Γuuu, Γruu and Γrur in this case.
You may assume for the rest of the question that these are the only non-zero
coefficients of the form Γαuβ. [7]

The Ricci tensor can be expressed in terms of the connection coefficients
as

Rαβ = −∂ρΓραβ + ∂αΓρρβ + ΓρσβΓσαρ − ΓραβΓσσρ .

Given that Γααβ = (2/r)δrβ + cot θδθβ, show that

Ruu =
2

r2

dµ

du
. [5]

Given that all other components of the Ricci tensor are zero, use the Ein-
stein field equations to show that the energy–momentum tensor must take the
form

Tαβ = − c2

4πr2

dM

du
lαlβ ,

2



where lα are the components of a null dual-vector that you should specify. [3]

Using results from Part (i), or otherwise, give a physical interpretation of
this solution in the case where dM/du < 0. [2]

TURN OVER...
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Question 2Y - Astrophysical Fluid Dynamics

(i) Starting from the ideal fluid equations in conservative form, show that
the Rankine-Hugoniot jump conditions can be written in a form that only
involves velocity components perpendicular to the shock. [10]

(ii) Suppose that a perpendicular shock forms in an ionized gas that
possesses a uniform magnetic field B0. Explain carefully why the Rankine-
Hugoniot conditions are unaffected by the presence of the magnetic field if
the magnetic field is aligned with the flow direction and the shock front is
perpendicular to the flow direction. [5]

A magnetized white dwarf with mass M and radius R accretes cold (with
negligble pressure), monatomic (γ = 5/3), gas down its magnetic poles. Close
to the surface of the white dwarf in the vicinity of one of the magnetic poles,
the accreting gas forms a column with cross-sectional area A and density ρ1

that falls with the free-fall velocity (i.e., zero total energy) vertically towards
the stellar surface before encountering a perpendicular adiabatic shock. The
magnetic field in the accretion column has strength B0 and is also aligned verti-
cally. Use this information to calculate the density, pressure, and temperature
of the post-shock gas in terms of M , R and ρ1. [8]

The accretion column will undergo a structural change (i.e., “collapse”) if
the sound speed exceeds the Alfvén speed (vA =

√
B2/(ρµ0), where µ0 is the

vacuum magnetic permeability) in the post-shock region. Estimate the critical
mass accretion rate Ṁcrit above which the accretion column will collapse, giving
your answer in terms of A, B0, M and R. [4]

Estimate Ṁcrit and the corresponding luminosity in the case of a white
dwarf with M = 1M�, R = 7000 km, magnetic field B0 = 103 T, and an
accretion column that has a circular cross-section with radius r = 300 km. [3]

[ If M1 is the Mach number of the incoming flow, you may use without proof
the following relations between pre- and post-shock quantities:

ρ2

ρ1

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

,

p2

p1

=
2γM2

1 − (γ − 1)

γ + 1
.

]
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Question 3X - Cosmology

(i) The figure below shows a spectrum of the quasar HS0741+4741.
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(A)	

(B)	

Explain the main features in this spectrum in as much detail as you can, in
particular:

(a) identify the emission line (A) and estimate the redshift of the quasar;

(b) explain why there are many more absorption lines on the blue side of the
emission line (A) compared to the red side; and

(c) explain why the absorption line (B) is so much broader and deeper than
neighbouring lines. [8]

Estimate the velocity width in km s−1 of an optically-thin Lyα absorption
line if the intergalactic medium has a temperature of T = 104 K. [2]

[The rest-frame wavelength of the Lyα transition is 1215.7 Å.]

TURN OVER...
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(ii) It has been proposed that by observing large numbers of quasar absorp-
tion lines with a stable high-resolution spectrograph it might be possible to
measure a change in the source redshift over a time interval from t0 to t0 +∆t0
at the observer. If the source redshift is zs when observed at t0, and the light
observed in ∆t0 is emitted over a time interval ts to ts + ∆ts, show that the
change in the source redshift is

∆z =
R(t0 + ∆t0)

R(ts + ∆ts)
− R(t0)

R(ts)

≈ [−H(zs) + (1 + zs)H0] ∆t0 , (∗)

where overdots denote differentiation with respect to time, R(t) is the scale
factor and H = Ṙ/R is the Hubble parameter with present-day value H0. [8]

Changes in redshift, ∆z, are often expressed in terms of an equivalent spec-
troscopic velocity shift, ∆v ≡ c∆z/(1 + zs). Assuming the Hubble parameter
is given by

H(z) = H0Ω1/2
m (1 + z)3/2 ,

where Ωm = 0.3 is the present-day matter density parameter, show from (∗)
that the spectroscopic velocity shift is

∆v = −cH0∆t0
[
Ω1/2
m (1 + zs)

1/2 − 1
]
. (∗∗) [4]

Estimate ∆v if ∆t0 = 100 years and zs = 3. [3]

Using your result from Part (i), compare this ∆v to the typical velocity
width of a Lyα absorption line and comment on what you find. [2]

The acceleration of the Sun towards the Galactic centre is estimated to be
a ≈ 2.3 × 10−10 m s−2. Is the velocity shift associated with the Solar motion
comparable to the velocity shift computed from (∗∗)? [3]

[You may adopt 1/H0 = 1.45× 1010 years.]
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Question 4Y - Structure and Evolution of Stars

(i) In a non-relativistic white dwarf, the energy density of the degenerate
gas can be written as

Ue ∝ n5/3
e ,

where ne is the number density of electrons. By considering the sum of grav-
itational and kinetic energy, where the latter is EK ∝ UeV (where V is the
volume), show that a white dwarf radius is inversely proportional to the cube
root of its mass. [7]

Hence, show that the white dwarf density is proportional to the square of
its mass and give a qualitative physical explanation for this proportionality. [3]

(ii) At the end of the AGB phase, a solar mass star ejects its remaining
envelope to expose its degenerate He core as a 0.5M� white dwarf of radiusR '
7000 km. Using the virial theorem (or otherwise), estimate the temperature of
the white dwarf at this early stage. [8]

Suggest an observational test that uses light in the visible range to verify
qualitatively your previous answer. [6]

How does your answer compare with the measured values of effective tem-
perature, Teff , in most white dwarfs? Give reasons for your answer. [4]

In the Milky Way galaxy, why are no white dwarfs known with Teff <
3000 K. [2]

TURN OVER...
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Question 5Z - Statistical Physics

(i) The (Helmholtz) free energy F is defined in terms of the energy E,
temperature T and entropy S by F = E − TS. Derive the Maxwell relation(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

,

where p and V denote the pressure and volume, respectively, of the system. [5]

Explain why the free energy is the appropriate thermodynamic potential
to consider at fixed T , V and particle number N . [5]

(ii) Explain what is meant by a first-order phase transition and a second-
order phase transition. [3]

Consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 +

c

6
m6 ,

where T is the temperature, m is the magnetization, and a, c, Tc > 0, b 6 0 are
constants. Find the equilibrium values of m at different temperatures, as well
as any metastable states, quantifying the transition between different regimes. [8]

Explaining your reasoning, sketch F as a function of m in the regimes
identified and give the order of the phase transition. [4]

For b = 0 compute the entropy and heat capacity at high and low temper-
atures. [5]
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Question 6X - Principles of Quantum Mechanics

(i) A quantum system has Hamiltonian H = H0+V (t). Let {|n〉}n∈N0 be an
orthonormal basis of H0 eigenstates, with corresponding energies {En}. When
t < 0, V (t) = 0 and the system was in state |0〉. Calculate the probability it
is found to be in state |1〉 at time t > 0, correct to leading order in V . [10]

(ii) Now suppose {|0〉, |1〉} form a basis of the Hilbert space for the system
in Part (i), with respect to which(

〈0|H|0〉 〈0|H|1〉
〈1|H|0〉 〈1|H|1〉

)
=

(
~ω0 Θ(t) ~v eiωt

Θ(t) ~v e−iωt ~ω1

)
,

where Θ(t) is the Heaviside step function and v is a constant. Calculate the
exact probability that the system is in state |1〉 at time t. [12]

Show that your approximate result in Part (i) is consistent with the exact
probability. [4]

Let Pmax(ω) be the maximum exact probability attained for any t > 0. For
which frequency ω is Pmax maximized? [4]

TURN OVER...
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) In cylindrical polar coordinates (R, φ, z),

(v̇R, v̇φ, v̇z) =

(
v2
φ

R
− ∂Φ

∂R
,−vR vφ

R
− 1

R

∂Φ

∂φ
,−∂Φ

∂z

)
,

where vR, vφ and vz are the velocity components, overdots denote differenti-
ation with respect to time t, and Φ is the gravitational potential. Use this
to derive the collisionless Boltzmann equation for an axisymmetric system in
terms of the phase space coordinates (R, φ, z, vR, vφ, vz) and the gravitational
potential. [4]

By taking a first moment of the collisionless Boltzmann equation show that
the corresponding Jeans equation for an axisymmetric system in steady state
can be written as

∂

∂R

(
ν vRvz

)
+
∂

∂z

(
ν v2

z

)
+ν

vRvz
R

+ ν
∂Φ

∂z
= 0,

where

ν =

∫
f d3v, vi =

1

ν

∫
f vi d

3v, vivj =
1

ν

∫
f vi vj d3v,

and f is the distribution function. [6]

(ii) Use the Jeans equation given in Part (i) to show that, for motion
satisfying vRvz � v2

z, near the plane of a highly flattened axisymmetric system
in steady state

∂

∂z

[
1

ν

∂

∂z

(
ν v2

z

)]
= −4π Gρ,

where ρ is the mass density. [11]

Consider a disc galaxy where all the mass is contained at a central point
and the mass density of the disc is negligible. The root-mean-square of the
z-component of the velocity of the stars in the disc, which may be considered
as having zero mass, is σz, which is independent of z. At radius R the number
density of stars as a function of z is ν(z) = ν0 e

−z2/(2z20), where ν0 and z0 � R
are constants.

What is the relation between σz and z0? [5]

If the stellar motions are interpreted (incorrectly) as being due to self-
gravity of mass in the disc, what is the inferred mean mass density in the
plane within a scale length z0 of z = 0? [4]
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Question 8Z - Topics in Astrophysics

(i) A planet of mass Mp is on a circular orbit at a separation a from a star
of mass M? � Mp. Derive an expression for the reflex motion, v?, of the star
in response to the planet. [4]

Spectroscopic observations of a solar mass star show an absorption line in
its optical spectrum to shift by 0.001 nm with a period of 10 days. What is the
minimum planet mass in orbit around the star to explain this observation? [5]

Can this line-shift, of a single line, be observed in a spectrum taken with a
resolution R = 105? [1]

(ii) A protoplanetary disk is locally isothermal and has a radial pressure
gradient p ∝ r−n, where r is the radius and n is a constant power law index.
Show that the azimuthal gas velocity in the disk can be written as

vφ,g = vK(1− η)1/2,

where vK is the Keplerian velocity in the disk, η = nc2
s/v

2
K, and cs is the sound

speed of the gas. [7]

In a disk with a minimum-mass solar-nebula surface density, Σ ∝ r−3/2,
and with a sound speed that scales as cs ∝ r−α, show that dp

dr
∝ r−4−α. [6]

If a pressure bump now develops in the disk of radial extent ∆r that is
capable of trapping solids, show that the timescale for accumulation of particles
in this pressure bump is a factor (∆r/r)2 of the particle infall time. You may
assume that the radial velocity of particles is given by vr = ηvK/2. [5]

How would the formation of such a pressure bump affect planet formation
in its vicinity? [2]

[You may assume
∫∞
−∞ e

−x2dx =
√
π.]

END OF PAPER
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