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given for a substantially complete answer to either Part.

Write on one side of the paper only and begin each answer on a sep-
arate sheet.

Answers must be tied up in separate bundles, marked X, Y, Z, according to
the letter associated with each question, and a cover sheet must be completed
and attached to each bundle. (For example, 1X and 3X should be in one
bundle and 2Y, 5Y and 7Y in another bundle.)

A master cover sheet listing all Parts of all questions attempted must also
be completed.

It is essential that every cover sheet bear the candidate’s exami-
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Question 1X - Relativity

(i) State the two necessary conditions for the Lorentz transformations to
apply.

Using 4-vector notation determine the equation of motion of a particle
moving along the x-axis whose acceleration stays constant in its own reference
frame.

(ii) Inertial frame S ′ moves with a velocity ~v along the x-axis with respect
to inertial frame S. A cylinder of length l′ and radius r′ is at rest in frame S ′

and makes an angle θ′ with respect to the forward direction of motion. Express
the cylinder’s length l in frame S as a function of l′, θ′ and β, where β = v/c,
v = |~v| and c is the speed of light.

Draw the cylinder’s projection on the x−y plane in both frames to deduce
how its shape is transformed in frame S.

Derive an expression for the area of the cylinder’s lid surfaces in frame S
as a function of r′, θ′ and β.

With the aid of the drawing, or otherwise, explicitly calculate the cylinder’s
volume V and V ′ in frames S and S ′, respectively, and find a simple expression
to relate the two.

[ You may find the following relation useful: tan(α−β) = tan α−tan β
1+tan α tan β

. ]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a circumstellar disk with Keplerian orbital frequency Ω and
mid-plane density ρ0 whose gravity is dominated by a central star of mass
M . Under the assumption of hydrostatic equilibrium derive how gas density ρ
varies as a function of height z above the disk’s mid-plane at a radial distance
r, and sketch ρ as a function of z. You may assume that gas temperature T
and mean molecular weight µ are independent of z and that z ≪ r.

If a gas atom which is part of this circumstellar disk is launched upwards
from the mid-plane of the disk with its typical thermal velocity calculate the
maximum height hmax above the disk that it can attain, and comment on the
result obtained. You may ignore collisions with other gas atoms.

(ii) Consider the circumstellar disk discussed in Part (i) and assume a
central star mass M = 1M⊙. A spherical dust grain of radius sd and mass md

in the disk experiences a drag force

~FD = −4π s2
d ρ cs ∆~vd,

where ρ is the disk gas density, cs is the sound speed in the disk and ∆~vd is
the relative velocity of the dust particle with respect to gas. The dust particle
will move together with the gas if its momentum stopping time,

tstop = md |∆~vd| / |~FD|,

is comparable to the dynamical time of the disk tdyn. Using the results from
Part (i) or otherwise, estimate the size of dust particle of density ρs = 1 g/cm3

for which tstop ≈ tdyn in the mid-plane of the disk at a radius r = 1 au, where
the gas disk surface density is Σ(1au) = 103 g/cm2.

A particle of radius sd = 1µm is at a height z = cs/Ω above the disk
mid-plane at r = 1 au. Find an expression for the speed at which the particle
settles towards the mid-plane of the disk in terms of ρd, sd, cs and Σ.

Determine whether the dust particle settles towards the mid-plane sub- or
super-sonically.

Estimate how many years it takes for the dust particle to fall to half of its
original height above the mid-plane.

TURN OVER...
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Estimate the velocity difference ∆v between the gas orbital velocity v at
the mid-plane of the disk and the Keplerian velocity vk = Ωr at the same
radius r as a function of cs and vk alone. You may assume that dp/dr ∼ −p/r,
where p is the gas pressure.

Hence calculate a numerical value for ∆v at r = 1 au assuming that the
temperature T (1au) = 200 K and that the disk is made of hydrogen atoms.

4
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Question 3X - Physical Cosmology

(i) The two Friedmann equations are

(

Ṙ

R

)2

=
8πG

3
ρ− kc2

R2
+

Λc2

3
,

R̈

R
= −4πG

3

(

ρ +
3p

c2

)

+
Λc2

3
,

where R is the scale factor, ρ is the mass density, p is pressure, k is a constant
that specifies the geometry of the universe, Λ is the cosmological constant and
c is the speed of light. Use these equations to derive the fluid equation in the
following form

d

dt
(ρR3) +

p

c2

d

dt
(R3) = 0.

Assume that p = wρc2, where w is a constant. Show that

ρR3(1+w) = constant ,

and from this equation deduce how density depends on redshift in matter-,
radiation-, and cosmological constant-dominated universes.

(ii) Explain briefly what Big Bang Nucleosynthesis (BBN) is. What is the
dominant component of the Universe during the BBN and what are the main
products of BBN?

In which important way does the BBN differ from the nucleosynthesis oc-
curring in the cores of stars?

During nucleosynthesis the effective degeneracy factor g∗ is given by

g∗ =
[

∑

gi

]

bosons
+

[

7

8

∑

gi

]

fermions

,

where gi is the number of possible states of species i. In the standard model of
particle physics there are 3 neutrino types and for each type there is a particle
and its corresponding anti-particle.

TURN OVER...
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The following reactions

νe + n←→ p + e−

e+ + n←→ p + ν̄e

stop at the freeze-out temperature TF. Assuming that electron-positron anni-
hilation and neutrino decoupling occur simultaneously at the freeze-out tem-
perature, derive an expression for g∗ before freeze-out in terms of the number
of neutrino types Nν and calculate its value for both 3 and 4 neutrino types.

Assuming that the effective degeneracy factor g∗ ∝ T 6
F and kBTF =0.8 MeV

for Nν = 3, where kB is Boltmann’s constant, show that kBTF = 0.82 MeV for
Nν = 4.

For both protons and neutrons the number density is given by

N = AT 3/2exp(−mc2/kBT ) ,

where m is the particle mass and A is a constant. Use this to derive an
expression for the ratio of the number of neutrons to the number of protons
(Nn/Np)F at the freeze-out temperature.

Calculate the values of (Nn/Np)F at the freeze-out temperature for both
Nν = 3 and Nν = 4.

After freeze-out free neutrons are destroyed by the reaction

n −→ p + e− + ν̄e

until there are no free neutrons and most of the surviving neutrons end up in
He nuclei. Assuming that cosmic time t ∝ T−2 show that

[

Nn

Np

]

end
[

Nn

Np

]

F

≈ exp

[

− t3
τn

(

1 +
7

43
∆Nν

)−1/2
]

,

where ∆Nν is the change in the number of neutrino types with respect to
Nν = 3, t3 is the age of the universe at the end of nucleosynthesis for Nν = 3,
τn = 887 s is the free-neutron lifetime and [Nn/Np]end is the neutron to proton
ratio at the end of nucleosynthesis.

If t3 = 300 s show that the change of the primordial helium abundance ∆Y
due to a change in the number of neutrino types is

∆Y ≈ 0.014∆Nν .

6
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Question 4Z - Structure and Evolution of Stars

(i) Explain briefly the physical basis for the two-dimensional classification
of stars into the Morgan-Keenan (M-K) scheme consisting of a spectral type
and a luminosity class.

Explain what is meant by the term opacity, and briefly describe the different
sources of opacity in stellar atmospheres.

Which are the dominant sources of opacity in the atmosphere of an O5 V
star? Likewise, what are the dominant opacity sources in the atmosphere of a
M2 I star?

(ii) Consider a star that is fully radiative. Suppose that the energy genera-
tion rate per unit mass E is independent of radius r. Show that the temperature
gradient in the star is given by

dT

dP
=

3κE
16π ac GT 3

,

where T is the temperature, P is the pressure, κ is the opacity, a is the radiation
density constant, and c is the speed of light.

If the opacity κ is also constant, as is the case for electron scattering, show
that

T 4

4
=

T 4
0

4
+

3κE
16π ac G

(P − P0) ,

where T0 and P0 are the temperature and pressure at the surface. Hence show
that P ≈ CT 4 (where C is a constant) in the interior of the star where T ≫ T0.

A system is termed a ‘polytrope of index n’ if the dependence of pressure
on density is of the form P = Kρ(n+1)/n, where K is a constant. Use the result
above to show that the interior of a star where the total pressure is the sum of
gas pressure (assuming an ideal gas) and radiation pressure can be described as
a polytrope of index n = 3, provided that the energy generation rate satisfies
the inequality

E <
4πcG

κ
.

TURN OVER...

7
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Question 5Y - Statistical Physics

(i) Let S be a system with states |n〉, n = 1, . . . , N , with energy En and
occupied with probabilities p(n). By considering a large number W of identical
systems S coupled to a reservoir R such that the number of systems in state
|n〉 is W p(n), show that the number of possibilities to have W p(n) systems
in state |n〉 is

ΩS =
W !

∏

n[W p(n)]!
.

Hence show that the entropy of system S in the canonical ensemble is

S = −kB

∑

n

p(n) ln p(n) ,

where kB is Boltzmann’s constant.

What is the entropy of the system in the microcanonical limit where all
states |n〉 have the same energy En?

(ii) Consider a system of 3 fermions described by 2 quantum numbers
n ∈ {0, 1, 2} and s ∈ {−1

2
, 1

2
} such that the energy of fermion i is

Ei = niǫ− siB ,

where ǫ is a constant and B is the local magnetic field strength. Let this system
be in contact with a reservoir of temperature T . Show that the average spin
per fermion is given in terms of the canonical partition function Z by

〈s〉 =
1

3β

∂

∂B
ln Z ,

where β = 1/(kBT ) and kB is Boltzmann’s constant.

List all possible states of the 3-fermion system and determine the partition
function Z.

Calculate 〈s〉 and its leading-order term in the high-temperature limit.

8
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Question 6Z - Principles of Quantum Mechanics

(i) If A and B are operators which each commute with their commutator
[A, B], show that [A, eB] = [A, B]eB.

By considering
F (α) = eαAeαBe−α(A+B) ,

and differentiating with respect to the parameter α, show also that

eAeB = CeA+B = eA+BC,

where C = e
1

2
[A,B].

(ii) The annihilation and creation operators for a harmonic oscillator of
mass m and frequency ω are, respectively, given by

a =

√

mω

2~

(

x̂ +
i

mω
p̂

)

, a† =

√

mω

2~

(

x̂− i

mω
p̂

)

,

where x̂ and p̂ are the position and momentum operators, respectively. The
energy eigenstates for the Hamiltonian H are denoted by |n〉, n = 0, 1, 2, . . .
with a|0〉 = 0. The oscillator is subject to a small perturbation so that it is
now described by the Hamiltonian H + λV (x̂) with V (x̂) = cos(µx̂), where λ
and µ are constants. By expressing x̂ as a linear combination of a and a†, and
using the results from Part (i) or otherwise, show that

V (x̂) = e−
µ
2

~

4mω Re
(

eiµ
√

~

2mω
a†

eiµ
√

~

2mω
a
)

.

Hence calculate the matrix element 〈n|V (x̂)|0〉 for all n.

Show that to O(λ2) the shift in the ground state energy is

λe−
µ
2

~

4mω − λ2e−
µ
2

~

2mω

1

~ω

∞
∑

k=1

1

(2k)!2k

(

µ2
~

2mω

)2k

.

[ You may quote standard results for first and second order corrections
from perturbation theory. ]

TURN OVER...

9
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) For a star cluster orbiting in the potential of a host galaxy what is the
significance of the tidal radius.

Derive the tidal radius assuming that the galaxy and cluster are both point-
like with masses M and m, respectively, and that the cluster is at a distance
R from the galaxy.

A cluster of effective radius Rc starts orbiting its host galaxy at a distance
for which its tidal radius is much larger than Rc. Describe the mechanisms
which might be responsible for causing some of the cluster’s stars to eventually
reach beyond the tidal radius.

(ii) A stellar stream is made up of a train of stars orbiting within a host
galaxy potential on the same circular orbit with velocity vs. A perturber of
mass M flies directly through the stream modifying the orbits of stream stars.
The perturber is moving in the stream’s orbital plane at a constant velocity
vp at an angle α to the stream, where cos α = vs/vp. The potential of the
perturber is described by a Plummer model

Φ(r) =
−GM
√

r2 + r2
s

,

where r is the distance from the centre of the perturber and rs is a constant
scale radius. Use the impulse approximation to deduce how the velocity kick
imparted by the perturber in the along-stream direction ∆vx changes as a
function of the initial distance x of stars from the impact point in the frame
moving with the stream.

Sketch how ∆vx varies with x and hence describe what happens to the
stream stars immediately after the impact.

Using conservation of energy for orbits within a Keplerian potential, deduce
how changes in the velocities of stream stars determine whether their orbits
within the galaxy become larger or smaller in size.

Hence describe how you expect the density of the stream to evolve on long
timescales.

10



C
op

yr
ig

ht
 ©

20
15

 U
ni

ve
rs

ity
 o

f C
am

br
id

ge
. N

ot
 to

 b
e 

qu
ot

ed
 o

r 
re

pr
od

uc
ed

 w
ith

ou
t p

er
m

is
si

on
.

Question 8Z - Physics of Astrophysics

(i) It is assumed that a planet cannot exist in a stable orbit at distance apl

from a star of mass M if this star also has a binary companion with separation
abin in the range 0.3apl < abin < 3apl. Sixty percent of solar mass stars have a
binary companion and for these binaries the distribution of their orbital periods
P is roughly flat in log(P ) over the range P1 = 10 days to P2 = 106 years. What
fraction of solar type stars cannot host a planet at 1 au on account of being in
an unsuitable binary?

Suggest why the incidence of binaries is low outside the period range P1 to
P2.

(ii) A rocky object falls radially towards a star, with mass M∗, starting
at rest at a large distance r0 from the star. Using conservation of energy or
otherwise, write down an expression for the radial velocity of the object as
a function of radial distance r from the star and hence sketch how the time
spent in a given interval of log (r) depends on r.

Assuming that the object acts as a black-body and that it is in radiative
equilibrium with incident radiation from the star, determine the surface tem-
perature T of the body as a function of r. You may assume that the star
radiates as a black-body of radius R∗ and temperature T∗.

Derive an expression for the thermal timescale of the object ttherm as a
function of T if its radius, density and specific heat capacity are R, ρ and C
respectively. You may assume that the body has a uniform internal tempera-
ture.

Derive an expression for the amount of time that the object spends in equal
intervals of log (T ) as a function of T .

Hence derive a condition on the radius R of the object that must be satisfied
in order that the object always has time to attain its thermal equilibrium
surface temperature at all distances from the star.

END OF PAPER

11
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Question 1X - Relativity

(i) Determine whether an isolated free electron can absorb or emit a pho-
ton.

Consider an inertial frame S with an electron with mass me initially at rest.
A photon with 4-momentum ~pγ travelling along the x-axis collides with the
electron. Derive the photon’s frequency after the scattering ν ′ as a function of
its initial frequency ν and its scattering angle θ.

(ii) With the aid of the electro-magnetic field 4-tensor Fik, or otherwise,

show that B2 − E2 and ~E · ~B are invariant under Lorentz transformations.
Here ~E is the electric field, ~B is the magnetic field and the speed of light is set
to 1.

If ~E is at an angle θ with respect to ~B, is there an unique value of θ such
that it is invariant to all observers?

By constructing the Lorentz transformations relating ~E and ~B between the
two inertial frames S and S ′ show that if ~E · ~B = 0, but E2 6= B2, then there
is a frame S ′ such that ~E ′ × ~B′ = 0.

Can ~E ′ × ~B′ = 0 if | ~E| = | ~B|?

[ You may assume that:

F ik =









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









. ]

2
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a steady and spherically symmetric inflow of gas onto a star of
mass M . If the gas is at rest at infinity, qualitatively explain how gas velocity
u will change with distance r from the star.

Derive an equation for the spatial dependence of velocity which involves
only u, r, M and the gas sound speed cs, and use this to get an expression for
the sonic radius rs.

For an isothermal gas with density ρ∞ at infinity derive an expression for
the mass accretion rate onto the star.

If the gas at infinity is not at rest will the accretion rate increase or de-
crease?

(ii) Consider a steady flow of gas through a pipe whose radius is r1 at all
locations, except in the middle of the pipe where it is reduced to r2. In the
section of the pipe with radius r1 the gas density and pressure are ρ1 and p1,
respectively, while in the middle of the pipe they are ρ2 and p2. In the limit of
highly sub-sonic motion derive an expression for the rate of mass flow through
the pipe.

Consider now the case where gas moving through a De Laval nozzle is
initially very sub-sonic with sound speed cs,0 but eventually becomes super-
sonic. Find an expression for the gas velocity u and sound speed cs at the
narrowest part of the nozzle in terms of cs,0 and the adiabatic index γ, where
you may assume p ∝ ργ .

Hence derive an expression for the gas velocity at infinity in terms of cs,0

and γ.

If the initial gas pressure is p0 find an expression for gas pressure at the
narrowest part of the nozzle and hence deduce how gas pressure changes along
the whole nozzle.

Consider now a steady jet with pressure pjet ∝ ργ
jet, where γ = 5/3 and ρjet

is the density of the jet, moving through an external medium whose pressure
pmed scales with distance x as x−2. Using the results derived for the De Laval
nozzle, determine how the opening angle of the jet scales with x very far along
the jet, and explain the physical meaning of this result. You may assume the
jet to have a circular cross-section and neglect gravity.

TURN OVER...
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Question 3X - Physical Cosmology

(i) Explain the definition of angular diameter distance Dθ and show that
it is given by

Dθ = R(te)re =
R(t0)re

1 + z
,

where R is the scale factor, t is cosmic time, subscripts 0 and e refer to the
present day epoch and the epoch when the observed photons were emitted,
respectively, re is the comoving distance and z is the observed redshift.

In an Einstein–de Sitter universe the angular diameter distance is given by

Dθ =
2c

H0

1

1 + z

[

1 − (1 + z)−1/2
]

, (∗)

where H0 is the value of the Hubble constant at the present day and c is the
speed of light. At what redshift does the angular diameter distance reach a
maximum value?

How long does light take to travel from this redshift to us assuming that
H0 = 70 km s−1 Mpc−1?

Derive how the angular diameter distance is related to the luminosity dis-
tance dL and comment on what happens in the limit te → t0?

(ii) In an expanding universe what are the temperature dependencies of
matter density ρmat and radiation density ρrad?

Use these two temperature dependencies to show that the sound speed cs

is given by

c2
s =

1

3

( 4
3
ρrad

ρmat + 4
3
ρrad

)

c2 ,

where c is the speed of light. What is the sound speed in the radiation-
dominated era?

Assume that the universe is radiation-dominated for all epochs up to the
time of recombination. Also assume an Einstein–de Sitter universe with H0 =
70 kms−1 Mpc−1 and redshift at recombination zr = 1100. Using equation (∗)
or otherwise, derive expressions for the observed angular size and the physical
proper size of the sound horizon on the last scattering surface and calculate
their values.

4
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Sketch the angular cosmic microwave background power spectrum of tem-
perature anisotropies. On this sketch indicate the observed angular size of the
horizon and sound horizon. Briefly explain the physical meaning of this result.

Explain how the measurement of the sound horizon in redshift surveys can
be used as a standard ruler and calculate the minimum spatial scale that a
survey of local galaxies needs to span to detect the sound horizon. Has this
detection been made yet?

TURN OVER...

5
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Question 4Z - Structure and Evolution of Stars

(i) A massive star undergoes mass loss via a radiation-driven wind. Assum-
ing that all photons transfer their entire momentum to the outflowing wind,
show that the maximum mass loss rate that can be driven by radiation is given
by

Ṁmax =
L

v∞c
,

where v∞ is the wind terminal velocity, L is the luminosity and c is the speed
of light.

Show that with this maximum mass loss rate, the kinetic energy of the
wind is only a small fraction of the luminosity.

(ii) In the final stage of contraction to the main sequence, most stars evolve
to higher effective temperatures until the core temperature is sufficiently high
to initiate the thermonuclear reactions that supply the energy radiated from
the surface. State under what conditions it is reasonable to assume that the
star is in hydrostatic equilibrium during this phase.

Assuming that energy transport is dominated by radiative diffusion and
that the opacity follows Kramers’ law, use homology arguments to derive the
dependence of the star’s luminosity L on its effective temperature Teff during
the contraction stage.

The figure below shows theoretical evolutionary tracks for pre-main se-
quence stars. How do they compare with the answer to the above question?
What conclusions can be drawn from this comparison?

6
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Question 5Y - Statistical Physics

(i) Give a brief description of the phenomenon of Bose-Einstein condensa-
tion.

A system of N bosons in an isotropic harmonic potential can be modelled
as a set of harmonic oscillators of frequency ω with energy

Enxnynz
= Ẽ + E0 ,

where Ẽ = ~ω(nx+ny +nz), nx, ny, nz ∈ N0, and E0 = 3~ω/2 is the zero-point
energy. Show that there are (n + 2)(n + 1)/2 possible choices for nx, ny, nz

such that nx + ny + nz = n ∈ N0.

Show that the density of states for a single particle with energy above the
ground state in the range (n − 1)~ω < Ẽ ≤ n~ω can be approximated for
Ẽ ≫ ~ω by

g(Ẽ) ≈ 1

2

Ẽ2

(~ω)3
. (∗)

(ii) Consider the system of N bosons discussed in Part (i). Use the density
of states derived in equation (∗) to show that the number of particles N can
be expressed in terms of temperature T as

N − N0 = F (y)G(z) ,

where N0 is the number of particles in the ground state, F is a function of
y = kBT

~ω
that should be determined, z = exp(µ−E0

kBT
), µ is the chemical potential,

kB is the Boltzmann constant, and the polylogarithm

G(z) =
1

Γ(3)

∫ ∞

0

x2

z−1ex − 1
dx,

where Γ(n) is the Gamma function.

Show that z = N0/(N0 + 1), and that for 1 ≪ N0 ≪ N the critical
Bose-Einstein condensation temperature obeys Tc ≈ KN1/3, where the pro-
portionality factor K should be determined in terms of constants including the
Riemann Zeta function ζ(n) = 1

Γ(n)

∫ ∞

0
xn−1

ex−1
dx.

Calculate for this case the fraction N0/N at temperatures T just below Tc

as a function of T/Tc.

Briefly compare the behaviour with the result for free bosons for which
N0/N ≈ 1 − (T/Tc)

3/2.

TURN OVER...

7
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Question 6Z - Principles of Quantum Mechanics

(i) Express the spin operator S for a particle of spin 1
2

in terms of the Pauli
matrices σ = (σ1, σ2, σ3) where

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Show that (n · σ)2 = I for any unit vector n and deduce that

e−iθ n·S/~ = I cos(θ/2) − i(n · σ) sin(θ/2) .

(ii) The space of states V for a particle of spin 1
2

has basis states | ↑〉, | ↓〉
which are eigenstates of S3 with eigenvalues 1

2
~ and −1

2
~, respectively, where

S3 is the 3-component of the spin operator S. The Hamiltonian for the particle
is H = 1

2
α~σ1, where α is a real constant and σ1 is the Pauli matrix defined

in Part (i). Find explicit expressions for the states

e−itH/~ | ↑〉 and e−itH/~ | ↓〉

as linear combinations of the basis states.

The space of states for a system of two spin 1
2

particles is V ⊗ V . Write
down explicit expressions for the joint eigenstates of J2 and J3, where J is the
sum of the spin operators for the particles, and J3 is the 3-component of J.

Suppose that the two-particle system has Hamiltonian H = 1
2
λ~(σ1 ⊗ I −

I ⊗ σ1), where λ is a constant, and that at time t = 0 the system is in the
state with J3 eigenvalue +~. Calculate the probability that at time t > 0 the
system will be measured to be in the state with J2 eigenvalue zero.

8
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Describe the epicyclic approximation for nearly circular orbits, and use
this to sketch the motion, in a frame centred on the Sun, of stars that are
currently in the immediate vicinity of the Sun, but on orbits that lie at larger
or smaller Galactocentric radii.

Sketch the distribution of the tangential velocities of stars orbiting in the
Galactic disk in the vicinity of the Sun.

Explain what is meant by the asymmetric drift of nearby stars and give a
qualitative explanation of the asymmetry using epicycles.

(ii) Show that the Laplacian of a spherically symmetric potential Φ(r) can
be written in the form

∇2Φ(r) =
1

r

d2

dr2
(rΦ).

Hence derive an expression for the gravitational potential for a galaxy in
which the density of matter as a function of radius r obeys the following law

ρ(r) =
ρ0

1 + (r/a)2
,

where ρ0 and a are constants.

Derive an expression for how the mass interior to a given radius varies with
radius for this density distribution.

Deduce how the circular velocity and escape velocity change with radius.

Can real galaxies be described by this law at larger radii?

TURN OVER...

9
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Question 8Z - Physics of Astrophysics

(i) A star cluster of mass m orbits at a radius R within a galaxy of mass
M for which the bulk of the mass is located within a radius ≪ R. Derive an
estimate for the distance rT from the centre of the cluster at which the gravity
due to the cluster balances the tidal effect of the galaxy.

A cluster of luminosity 3 × 105L⊙ orbits at a galactocentric radius of R =
7 kpc and is associated with a pair of tidal tails which originate at a distance
50 pc from the cluster centre. Assuming that the average mass to light ratio of
the cluster’s stars is M/L = 2M⊙/L⊙, estimate the mass of the parent galaxy.

(ii) It has been argued that the presence in meteorites of daughter products
of the rare isotope 60Fe implies that the primitive solar nebula was impacted by
ejecta from a supernova that exploded in its neighbourhood before the nebula
condensed into planets. The nebula would however be stripped away by the
blast wave if it intercepted an energy greater than the gravitational energy
binding it to the proto-Sun. Assuming that the nebula was of mass 0.01M⊙

and radius 10 au, estimate the minimum distance dmin between the Sun and the
supernova at the point that it exploded. You may assume that the supernova
releases an energy of 1044 J.

Using dimensional analysis or otherwise, estimate the time required for the
blast wave to propagate a distance dmin calculated above, assuming that the
blast wave is spherically symmetric and the intervening medium is of uniform
density 10−18 kg m−3.

Assume that the maximum distance to which the ejecta can contaminate a
nebula is dmax = 1 pc. Given that the half-life of 60Fe is t0.5 = 1.5 × 106 years,
do you expect significant decay of 60Fe between the explosion of the supernova
and its interaction with a nebula at distance dmax?

The average stellar density and velocity dispersion in the solar neighbour-
hood is 0.1 pc−3 and 20 km s−1. Following the explosion of a supernova, cal-
culate the expected number of stars that are likely to pass within a distance
dmax of the explosion site within a time t0.5. You may neglect the effect of
gravitational focussing.

If stars possess a protostellar nebula for around 0.1% of their lifetimes, how
many supernovae must explode before a protostellar nebula is contaminated
in this way?

If the local rate of supernovae per unit volume is 10−13 pc−3 yr−1, within
what volume of the Galaxy is one contamination event expected within 1010 years,

10
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and how many stars are contained in this volume?

Comment on whether you think that this a likely scenario for contaminating
the primordial solar nebula, and explain without calculation how the answer
would change if stars are preferentially clustered at birth.

END OF PAPER

11
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Question 1X - Relativity

(i) The metric of the surface of a sphere in spherical polar coordinates is

ds2 = a2dθ2 + a2 sin2 θdφ2 ,

where a is a constant. Write down all metric components gik.

Given the dimensionality of the problem how many independent Christoffel
symbols are there?

Hence calculate all independent Christoffel symbols which are non-zero.

By explicit calculation show how many independent components of the
curvature tensor there are.

With the aid of Christoffel symbols calculate all these components and thus
derive the Gaussian curvature K of a sphere.

(ii) By considering the metric describing the geometry in the vicinity of
a non-rotating black hole of mass M explain the significance of the radius
rs = 2GM/c2, where c is the speed of light.

Express the Lagrangian of this metric and thus derive the four geodesic
equations using the affine parameter σ along the geodesic xµ(σ) with µ =
0, 1, 2, 3. From these equations derive the geodesic equations describing the
motion of both a massive particle and a photon in the equatorial plane, i.e.
θ = π/2. Instead of the µ = 1 equation use a simpler expression given by the
first integral of the geodesic equations.

A spacecraft falls radially from rest at infinity towards a black hole of mass
M . Using the geodesic equations from above derive an expression for the
spacecraft’s coordinate speed dr/dt which depends only on constants and on
the coordinate r.

According to an external observer how long does it take for the spacecraft
to reach rs? Discuss the physical meaning of this result.

2
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a barotropic fluid which is at rest in a steady state with a
uniform density ρ0 and pressure p0. Assuming a small perturbation to this
equilibrium configuration characterized by some density ∆ρ, pressure ∆p and
velocity ∆~u, derive the equation governing the time evolution of this pertur-
bation.

By explicit calculation show that the perturbation travels with speed cs =
√

dp/dρ.

Determine how |∆~u| compares to cs and discuss the physical implications.

(ii) Consider a strong adiabatic shock travelling through the interstellar
medium (ISM). The unperturbed ISM has a density n1 = 1 cm−3 and tem-
perature T1 = 104 K. What pre-shock speed u1 is needed for the post-shock
temperature to be T2 = 107 K? What is the post-shock velocity u2 for this
situation? You may assume γ = 5/3 and that for a strong shock

T2

T1

=

(

γ − 1

γ + 1

) (

2γM2
1

γ + 1

)

,

where M1 is the Mach number of pre-shocked gas.

A star emits a wind of constant velocity vw and mass-loss rate Ṁ . The
wind propagates into the surrounding interstellar medium of density ρ0 and
terminates in a shock. Estimate how the shock radius R scales as a function
of time assuming that all kinetic wind energy is used to drive the shocked
interstellar medium outwards (i.e. there are no radiative losses).

Explain the physical reason why R scales with time differently than is the
case for the Sedov-Taylor solution.

Calculate the velocity of the flow just behind the shock in the star’s rest
frame, as a function of the rate of change of the shock radius Ṙ. You may
assume that the shock is strong and that the adiabatic index γ = 5/3.

Comment on why this velocity is different from vw.

After some time the star that was blowing the wind explodes as a supernova.
Assuming that all the kinetic energy of the supernova is used to sweep up the
shocked stellar wind, estimate how the supernova blast wave radius Rs scales
with time.

TURN OVER...

3
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Question 3X - Physical Cosmology

(i) Rich clusters of galaxies are observed embedded in hot gas which emits
X-rays. What physical process gives rise to this radiation?

Explain why the observed X-ray surface brightness BX is related to the
electron density ne in the gas by

BX ∝
∫

n2
edl ,

where l is distance measured along the line of sight through the cluster.

Sketch how and explain why the cosmic microwave background (CMB)
black-body spectrum changes as seen through the cluster. Hence explain why,
at radio frequencies, the CMB as seen through the cluster is observed to have
a lower temperature than it would otherwise have?

Given that the observed fractional temperature decrement in the CMB is
given by

∆T

TCMB

∝
∫

nedl ,

explain how the observables ∆T/TCMB and BX in conjuction with the angular
size of the cluster can be used to estimate the angular diameter distance to the
cluster. Discuss whether this method can be used to arbitrarily high redshifts,
explaining your reasoning.

(ii) The comoving radius of the cosmological horizon at time t is given by

rH(t) ∝ [H(t)R(t)]−1 ,

where H(t) is the Hubble constant and R(t) is the scale factor. Explain what
the horizon problem is and why inflation is invoked to solve it.

Sketch rH as a function of time for times from before the inflation until the
present day.

Assume that the energy scale of the GUT phase transition is 1014 GeV,
the temperature of the cosmic microwave background is T0 = 2.73 K and the
temperature at the end of the radiation-dominated era is Teq = 13900 K. Esti-
mate the minimum number of e-foldings of expansion that are required during
inflation to solve the horizon problem for a flat universe. Does one need to
invoke the anthropic principle with this number of e-foldings?

If the present age of the Universe is 13.7 billion years show that inflation
ends at a cosmic time of order 10−34 s.

4
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Question 4Z - Structure and Evolution of Stars

(i) Two stars begin their lives on the Zero Age Main Sequence with the
same initial mass, Mi = 50 M⊙. Star A has solar composition, while in star B
elements heavier than He are 100 times less abundant than in the Sun. Which
of the two stars would you expect to spend longer on the Main Sequence and
why?

Explain in a few sentences the main difference between H ii regions and
planetary nebulae.

Observationally what differences might you expect in chemical composi-
tion, degree of ionisation, and kinematics between H ii regions and planetary
nebulae?

(ii) A 1M⊙ white dwarf accretes matter of solar composition from a com-
panion star for 105 yr at a rate of 10−10M⊙ yr−1. At the end of this accretion
period, the accreted hydrogen ignites and burns at a constant luminosity for
100 days. What is the composition that results from the hydrogen burning?

Is mass lost from the system? You can assume that the main source of
opacity is electron scattering, κes = 0.02 (1 + X) m2 kg−1, where X is the
hydrogen mass fraction.

Explain briefly what is meant by the term thermonuclear supernova.

Suggest observational tests that may help distinguish between different
proposals for the origin of thermonuclear supernovae.

TURN OVER...

5
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Question 5Y - Statistical Physics

(i) A sample of gas has pressure p, volume V , temperature T and entropy
S. Use the first law of thermodynamics to derive the Maxwell relation

(

∂S

∂p

)

T

= −
(

∂V

∂T

)

p

.

Let x, y and u represent three related thermodynamic variables. Show
that along the curve in the (x, y) plane defined by the condition that u(x, y)
is constant

(

∂x

∂u

)

y

(

∂u

∂y

)

x

(

∂y

∂x

)

u

= −1 .

(ii) Consider a perfectly insulated pipe with a throttle valve (see figure).
Gas initially occupying volume V1 on the left is forced slowly through the valve
at constant pressure p1. A constant pressure p2 is maintained on the right and
the final volume occupied by the gas after passing through the valve is V2.
Show that the enthalpy H of the gas is conserved during this process.

p , Vp , V
1      1 2      2

Show that the specific heat at constant pressure Cp = T (∂S/∂T )p is related
to the enthalpy by Cp = (∂H/∂T )p .

Using the results from Part (i), or otherwise, show that the Joule–Thomson
coefficient (∂T/∂p)H is

V

Cp

[

T

V

(

∂V

∂T

)

p

− 1

]

.

Calculate this coefficient for an ideal gas.

Suppose that the gas obeys an equation of state

p = kBT

[

N

V
+ B2(T )

N2

V 2

]

,

where N is the number of particles, kB is Boltzmann’s constant and B2 is a

function only of temperature T . Derive a condition in terms of
d

dT

(

B2(T )

T

)

for obtaining a positive Joule–Thomson coefficient.

6



C
op

yr
ig

ht
 ©

20
15

 U
ni

ve
rs

ity
 o

f C
am

br
id

ge
. N

ot
 to

 b
e 

qu
ot

ed
 o

r 
re

pr
od

uc
ed

 w
ith

ou
t p

er
m

is
si

on
.

Question 6Z - Principles of Quantum Mechanics

(i) The angular momentum operator J obeys commutation relations which
may be written in the form

[J3, J±] = ±~J±, [J+, J−] = 2~J3, [J2, Ji] = 0,

where J± = J1 ± iJ2. The normalized angular momentum eigenstates are
denoted |j, m〉, where m~ are the eigenvalues of J3 and j(j + 1)~2 are the
eigenvalues of J2 = 1

2
(J+J− + J−J+) + J2

3 . State the allowed values that the
quantum numbers j and m may take.

Show that the states |j, m〉 satisfy

J−|j, m〉 = ~

√

(j + m)(j − m + 1) |j, m − 1〉 .

(ii) Consider two quantum systems with angular momentum states |1
2
, r〉

and |j, m〉, following the notation defined in Part (i). The eigenstates corre-
sponding to their combined angular momentum can be written as

| J, M 〉 =
∑

r m

CJ M
r m | 1

2
, r 〉 | j, m 〉 ,

where CJ M
r m are Clebsch-Gordan coefficients for addition of angular momenta

1
2

and j. What are the possible values of J and what is a necessary condition
relating r, m and M in order that CJ M

r m 6= 0 ?

Using the results from Part (i) or otherwise, calculate the values of CJ M
r m

for j = 2 and for all M > 1
2
. Use the sign convention that CJ J

r m > 0 when m
takes its maximum value.

A particle X with spin 3
2

and intrinsic parity ηX is at rest. It decays into
two particles A and B with spin 1

2
and spin 0, respectively. Both A and B have

intrinsic parity −1. The relative orbital angular momentum quantum number
for the two particle system is ℓ. What are the possible values of ℓ for the cases
ηX = +1 and ηX = −1 ?

Suppose particle X is prepared in the state | 3
2
, 3

2
〉 before it decays. Cal-

culate the probability P for particle A to be found in the state | 1
2
, 1

2
〉, given

that ηX = +1.

What is the probability P if instead ηX = −1?

TURN OVER...
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Explain what is meant by the distribution function of stars in a galaxy.

How is the distribution function connected to the volume density of stars,
giving consideration to how this is normalised?

Describe the meaning of the Collisionless Boltzmann Equation and discuss
its limitations.

State Jeans Theorem and comment briefly on its use.

(ii) For a distribution function that depends solely on energy, derive an
expression that relates the volume matter density ρ to the distribution function
f(E), where the relative energy E = Ψ − 1

2
v2, the relative potential Ψ =

−Φ + Φ0, Φ is the potential, Φ0 is a constant and v is the velocity. Assume
stars on average have a mass of m.

Consider a galaxy of mass M that is described by a Plummer model for
which

Φ(r) = − GM√
r2 + a2

,

ρ(r) =
3M

4π

a2

(r2 + a2)5/2
,

where a is a constant. Show that the distribution function f(E) = −b E7/2 is
a viable solution for this galaxy, and find the value of the constant b.

Derive the behaviour of the velocity dispersion as a function of radius.

[ You might find the substitution E = Ψ cos2 θ as well as the following
integrals useful:

∫ π/2

0

sin2 θ cos8 θdθ =
7π

512
,

∫ π/2

0

sin4 θ cos8 θdθ =
7π

2048
. ]

8
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Question 8Z - Physics of Astrophysics

(i) Dust grains are exposed to radiation from a starburst in a galactic
nucleus. Assuming the dust acts like a black-body and has a density 3000 kg
m−3, determine the size range of grains that are blown out by radiation pressure
if the mass to light ratio for the starburst region is M/L = 0.1M⊙/L⊙.

Comment briefly on how this calculation would have changed if the dust
had not been assumed to act like a black-body.

(ii) A spherical nebula of ionised gas located in Orion (at a distance
450 pc) is resolved at a wavelength of 6 cm and found to have a radius of
330 milliarcseconds and a total flux at this wavelength of 5 mJy. Calculate the
size of the object.

Assuming that the gas is at a temperature of 104 K, what can you deduce
about the nature of the emission from the fact that the observed flux is much
less than that emitted by a black-body of this size and temperature?

The flux produced at frequency ν by thermal bremsstrahlung from an op-
tically thin gas of temperature 104 K, is given by

[

Sν

mJy

]

= 3.4

[

ν

GHz

]−0.1[
VEM

1063m−3

][

D

kpc

]−2

,

where D is the distance to the source and VEM is the volume emission mea-
sure, i.e. the integral of nionne over volume, where nion and ne are the number
densities of ions and electrons respectively (in m−3). Deduce the number den-
sity in the nebula assuming it to be of uniform density and composed of pure
hydrogen.

The rate of recombinations to excited electronic states per unit volume is
given by αBnionne, where αB = 2 × 10−19 m3 s−1 is the Case B recombination
coefficient. Explain why, when calculating ionisation equilibrium in a dense
gas, it is this Case B coefficient (which does not include recombinations to the
ground state) that is appropriate.

Calculate the output of ionising photons per second that must be provided
by a luminosity source that maintains the nebula’s ionisation equilibrium.

TURN OVER...
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The pressure in the nebula exceeds that of its surroundings and so it ex-
pands, initially at the sound speed of the ionised gas. Estimate the expansion
timescale and compare it with the recombination timescale. Is it reasonable
to assume that the nebula remains in ionisation equilibrium as it expands?

Estimate the size and internal density of the nebula when it has expanded
to the point that it is in pressure equilibrium with its surroundings, which have
a number density 109 m−3 and temperature 100 K, assuming that the nebula
remains at temperature 104 K as it expands.

END OF PAPER

10
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Question 1X - Relativity

(i) The energy-momentum tensor of a perfect fluid is

T µν = (ρ + p/c2)uµuν − pgµν ,

where ρ is density, p is isotropic pressure in the instantaneous rest-frame, uµ

are the components of 4-velocity, gµν is the metric and c is the speed of light.
Show that for any fluid

uν∇µu
ν = 0 .

Hence show that a perfect fluid in a gravitational field must satisfy

∇µ(ρuµ) + p/c2∇µu
µ = 0 , (∗)

(ρ + p/c2)uµ∇µu
ν = (gµν − uµuν/c2)∇µp .

If the fluid is dust show that the worldline of each particle is a geodesic.

(ii) Using equation (∗), or otherwise, show that for a homogeneous and
isotropic universe described by the Friedmann-Robertson-Walker geometry,
for which Γµ

0µ = cṘ/R for µ = 1, 2, 3, the following equation holds

d(ρR3)/dR = −3pR2/c2 ,

where R is the scale factor and ρ, p and c are defined as in Part (i).

Outline the physical significance of this equation.

Assuming comoving coordinates xµ = (t, r, θ, φ) such that the Friedmann-
Robertson-Walker metric yields

ds2 = c2dt2 − R(t)2

[

dr2/(1 − kr2) + r2(dθ2 + sin2 θdφ2)

]

,

derive the Friedmann equations from the gravitational field equations Rµν =
−k(Tµν − 1

2
Tgµν) + Λgµν . Here Rµν is the Ricci tensor, Tµν is the energy-

momentum tensor of a perfect fluid, gµν is the metric, Λ is the cosmological
constant and k = 8πG/c4. Due to symmetry consider only 00 and 22 compo-
nents and recall that R00 = 3R̈/R and R22 = −(RR̈ + 2Ṙ2 + 2c2k)r2/c2.

Consider a massive particle in a flat expanding Friedmann-Robertson-Walker
universe. Show that its physical 3-momentum decreases as p(t) ∝ 1/R(t),
where R(t) is the scale factor.

2
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Question 2Y - Astrophysical Fluid Dynamics

(i) Explain why the viscous stress tensor σij needs to be symmetric.

Consider two infinitely long concentric cylinders with radius r1 and r2 > r1.
The cylinders rotate with angular speeds Ω1 and Ω2, respectively. The space
between the cylinders is filled with a viscous fluid. With the aid of the Navier-
Stokes equation in cylindrical polar coordinates show that in steady state the
fluid rotates with tangential velocity

vφ = Ar + B/r ,

where A and B are two constants, the dependence of which on r1, r2, Ω1 and
Ω2 should be determined.

Assuming the flow is incompressible and of density ρ, find how the pressure
difference ∆p between the inner and outer cylinder depends on Ω1 and Ω2 in
the limit where r2−r1 ≪ r1 or r2. You may assume that ∆p ≈ (r2−r1)∂p/∂r .

(ii) Consider two incompressible stratified fluids in a uniform gravitational
field ~g that is normal to the boundary between the fluids. The lower fluid has
density ρ and velocity U along the x-axis, while the upper fluid has density ρ′

and velocity U ′ along the x-axis. It can be shown that the instabilities that
may develop along the interface between these two fluids have phase velocity
given by

ω/k =
ρU + ρ′U ′

ρ + ρ′
±
[

g

k

ρ − ρ′

ρ + ρ′
− ρρ′(U − U ′)2

(ρ + ρ′)2

]1/2

, (∗)

where g = |~g|. From equation (∗) derive the condition on the wave number k
such that the fluids are subject to Kelvin-Helmholtz (KH) instability.

Explain what happens if g = 0.

Consider now a cold dense cloud with radius Rcl injected into a hot uniform
wind tunnel with density ρ1 moving at a large relative velocity U along the
x-axis. Initially the cloud is in pressure equilibrium with the surrounding
medium and the cloud density is ρ2. A shock will form ahead of the cloud and
KH instabilities will be important in its wake. Sketch the shock front and the
cloud immersed in this wind tunnel indicating the direction of the x-axis and
where the flow is super- and sub-sonic.

TURN OVER...
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Neglecting gravity for the moment, estimate the characteristic growth time
of the KH instability by assuming that instabilities of the order of cloud size are
responsible for cloud destruction. You may assume that the density contrast
between the cloud and the wind tunnel D = ρ2/ρ1 ≫ 1.

In the case that the self-gravity of the cloud is not negligible, estimate
the critical mass of the cloud as a function of wind tunnel properties and D
such that it remains stable against the KH instability. Provide a physical
interpretation of the equation obtained.

4
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Question 3X - Physical Cosmology

(i) A density perturbation δm = (ρm − ρ̄m)/ρ̄m in a pressureless matter-
dominated expanding universe with mean density ρ̄m ∝ R−3, where ρm is
matter density, obeys the equation

δ̈m + 2
Ṙ

R
δ̇m − 4πGρ̄mδm = 0 ,

where R is the scale factor. Find the growing and the decaying solutions in an
Einstein–de Sitter model as a function of R.

Show that for models with low matter densities today, ρ̄m = βρcrit, where
ρcrit is the critical density of the universe and 0 < β ≪ 1, the growing mode
solution at sufficiently early cosmic times is δm ∝ t2β . What is the physical
reason for the different growth rate with respect to that for the Einstein–de
Sitter model?

(ii) Show that in a Friedmann–Robertson–Walker universe, the observed
redshift of a distant comoving source changes with proper time t measured by
a comoving observer according to

dz

dt
= H0(1 + z) − H(z),

where H(z) is the Hubble parameter with value H0 today.

The spectrum of a very high-redshift quasar shows an absorption line due
to a foreground gas cloud at z = 4.0. If the quasar is monitored for 10 years
what is the expected change in wavelength of the absorption line δλ/λ for an
Einstein–de Sitter universe with H0 = 70 kms−1Mpc−1?

Estimate how this fractional wavelength change compares to the line width
if the gas cloud has a velocity dispersion of 100 kms−1 and comment on your
result.

How does the predicted wavelength change for our current best model of
the universe differ from the Einstein–de Sitter case? Sketch dz/dt as a function
of z for these two model universes to corroborate your answer.

TURN OVER...

5
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Question 4Z - Structure and Evolution of Stars

(i) Describe briefly at least three different observational techniques used to
detect binary stars.

Two stars, X and Y, are separated on the sky by one second of arc. The
apparent magnitudes of star X through the V and B filters are measured to
be mV = 6.0 and mB = 6.0, respectively. For star Y, the measured values are
mV = 6.0 and mB = 7.0. Explaining your reasoning, is it likely that the two
stars are members of a binary system? What additional information would be
required to obtain a definitive answer?

Which of the two stars is more likely to consume its nuclear fuel first?

(ii) In the outer parts of a star, the luminosity and enclosed mass are
approximately constant with radius, and the opacity can be assumed to be of
the form

κ = κ0
P α−1

T β−4
,

where P is the pressure, T is the temperature, and κ0, α(> 0) and β(> 0)
are constants. Radiation pressure may be neglected. With the aid of the
equations of stellar structure, and assuming that energy is transported by
radiative diffusion, write down a differential equation for T (P ), and show that
P can be written as

P =

[

B +
α

β
AT β

]
1

α

,

where A and B are constants.

Hence show that
d lnP

d lnT
=

AT β

B + α
β
AT β

.

If the star obeys the surface boundary condition P = 0, T = Ts, determine
the limiting value of d lnP/d lnT deep in the atmosphere, where T ≫ Ts.

Show that if the opacity follows the Kramers’ law, κ ∝ ρT−3.5, where ρ is
the density, the atmosphere is stable against convection.

[ You may assume that the Schwarzschild criterion for convective instability
is d lnP

d lnT
< γ

γ−1
, where γ = 5/3 for a monoatomic gas. ]

6
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Question 5Y - Statistical Physics

(i) The Ising model consists of N particles arranged on a D-dimensional
periodic Euclidean lattice. Each particle has spin up, si = +1, or down,
si = −1, and the energy in the presence of a magnetic field B is

E = −B
N
∑

i=1

si − J
∑

〈ij〉

si sj ,

where J > 0 is the coupling strength between two particles, and the second
summation covers all pairs of interacting particles assumed here to include for
every particle only its two nearest neighbours in each spatial direction. Briefly
discuss the mean-field theory approximation for this model and derive that in
this approximation the canonical partition function has the form

Z = C

(

∑

s=±1

eβBeffs

)N

,

where β = 1/(kBT ), kB is Boltzmann’s constant, T is temperature, Beff =
B + 2DJm, m is the average spin per particle. The pre-factor C, which is
independent of the individual spins si and the magnetic field B, should be
determined.

(ii) Consider the mean-field theory approximation of the Ising model of
Part (i). Show that the average spin m = 1

N

∑

i〈si〉 per particle in this model
obeys

m = tanh(βB + 2βDJm) .

Consider a variation of the Ising model where now each particle can have a
spin value si ∈ {−σ, −σ+1, . . . , +σ} for a positive integer or half-odd integer
value of σ. Show that in the mean-field theory approximation, the average
spin per particle obeys

m =

(

σ +
1

2

)

coth

[(

σ +
1

2

)

β(B + 2DJm)

]

− 1

2
coth

[

β(B + 2DJm)

2

]

.

Calculate the critical temperature Tc as a function of D, J and σ, and
explain its significance.

TURN OVER...
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[ You may find useful that for z ∈ R and positive or half-odd integer n

(

n
∑

s=−n

esz

)

(e
z

2 − e−
z

2 ) = e(n+ 1

2
)z − e−(n+ 1

2
)z ,

(

n +
1

2

)

coth

[(

n +
1

2

)

z

]

− 1

2
coth

(z

2

)

=
n

3
(n + 1)z + O(z3). ]

8
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Question 6Z - Principles of Quantum Mechanics

(i) The Hamiltonian for a quantum system in the Schrödinger picture is
H0 + λV (t), where H0 is independent of time and the parameter λ is small.
Define the interaction picture corresponding to this Hamiltonian and derive a
time evolution equation for interaction picture states.

Suppose that |χ〉 and |φ〉 are eigenstates of H0 with distinct eigenvalues E
and E ′, respectively. Show that if the system is in state |χ〉 at time zero then
the probability of measuring it to be in state |φ〉 at time t is

λ2

~2

∣

∣

∣

∣

∫ t

0

dt′ 〈φ|V (t′)|χ〉 ei(E′−E)t′/~

∣

∣

∣

∣

2

+ O(λ3) .

(ii) Let H0 be the Hamiltonian for an isotropic three-dimensional harmonic
oscillator of mass m and frequency ω, with χ(r) being the ground state wave-
function (where r = |x|) and φi(x) = (2mω/~)1/2 xi χ(r) being wavefunctions
for the states at the first excited energy level (i = 1, 2, 3). The oscillator is in
its ground state at t = 0 when a perturbation

λV (t) = λ x̂3 e−µt

is applied, where µ is a positive constant, and H0 is then measured after a
large time has elapsed. Show that to first order in perturbation theory the
oscillator will be found in one particular state at the first excited energy level
with probability

λ2

2~mω (µ2 + ω2)
,

but that the probability that it will be found in either of the other excited
states is zero (to this order).

[ You may assume that 4π
∫∞

0
r4 |χ(r)|2 dr = 3~

2mω
. ]

TURN OVER...
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Discuss how the Virial Theorem can be used to estimate masses of
astrophysical objects from observable quantities.

The Jeans equation for spherical systems states that

d(νv2
r )

dr
+ ν

(

dΦ

dr
+

2v2
r − v2

θ − v2
φ

r

)

= 0. (∗)

Define the quantities entering this equation and discuss the ease with which
each of them can be measured using observations.

With regards to the Jeans equation, what might the mass-density-anisotropy
degeneracy refer to?

(ii) A handful of stars is orbiting with constant velocity dispersion σ and
constant velocity anisotropy β within a spherically symmetric galaxy domi-
nated by dark matter with a density distribution given by

ρ(r) =
ρ0

(r/a)(1 + r/a)3
,

where ρ0 and a are constants. Show that the potential of the system can be
written as

Φ(r) =
A

r + a
,

where the constant A should be determined.

The number density of stars at a radius r = a is νa. Using equation (∗), or
otherwise, deduce how the density of stars changes as a function of radius.

Dark matter halos are rarely spherical. Consider a dark matter halo that
is flattened along the z-axis by a constant factor q, so that its potential is

Φ(r) = ln [R2 + (z/q)2],

where R is the radial distance in the plane normal to the z-axis. Deduce the
flattening of the iso-density contours.

Comment on the range of q giving rise to a physical density distribution.

10
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Question 8Z - Physics of Astrophysics

(i) Consider an axisymmetric disc with constant circular velocity indepen-
dent of distance from the star R, i.e. V (R) = V0, viewed at inclination angle
i. Sketch contours of constant projected velocity along the line-of-sight.

Show that the flux in a spectral line of rest frequency ν0 observed in the
frequency interval ν to ν + dν is of the form

[

1 −
(

ν − ν0

νmax − ν0

)2]−1/2

dν,

where νmax is the highest frequency present in the observed spectrum of this
line. Sketch this spectrum and state the relationship between νmax and V0.

State without detailed calculation how the line shape differs in the case
that V (R) = V0(Rout/R) for a disc that extends over Rin < R < Rout.

(ii) A short burst in the continuum of an Active Galactic Nucleus lasting
a few hours triggers a response in the broad emission lines from material sur-
rounding the nucleus which begins at time T = 3.73 days later. The width of
the Hβ line at 4861 Å detected by the observer at a later time is 64 Å. Use
this information to estimate the mass of the black hole, explaining clearly the
assumptions made.

The light curve of the response in the emission lines is used to constrain the
geometry of the line emitting clouds. Assuming that the clouds are distributed
in a narrow axisymmetric ring perpendicular to the plane of the sky, show that
the form of the expected response at time t after the burst is first detected is
given by

I(t) ∝
[

t(2T − t)
]−0.5

,

and sketch this form.

Derive the expected response if instead the clouds are distributed in a thin
spherical shell.

In the case of the ring of clouds, explain without detailed calculation how
changes in the shape of the line over the period 0 < t < 2T could be used to
distinguish tangential cloud motions from radial inflow or outflow.

END OF PAPER
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