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Question 1X - Relativity

(i) For a timelike geodesic in the equatorial plane (θ = π/2) of the Schwarzschild
space-time with line element

ds2 = −(1 − rs/r)c
2dt2 + (1 − rs/r)

−1dr2 + r2(dθ2 + sin2 θdφ2) ,

where rs is the Schwarzschild radius, derive the equation

1
2
ṙ2 + V (r) = 1

2
(E/c)2 ,

where 2V (r)/c2 = 1−rsr
−1+(h/c)2r−2−(h/c)2rsr

−3 and h and E are constants.
The dot denotes the derivative with respect to an affine parameter τ satisfying
c2dτ 2 = −ds2.

(ii) Using the results from part (i) show that if h2 > 3r2
sc

2, there is a stable
circular orbit at r = R, where R is the smaller root of the quadratic equation

r2 = (h/c)2(2r/rs − 3) ,

and that Ω, its orbital angular frequency with respect to τ is given by

Ω2R2

c2
=

ε

(2 − 3ε)
,

where ε = rs/R.

Show also that the angular frequency ω of small radial perturbations is
given by

ω2R2

c2
=

ε(1 − 3ε)

(2 − 3ε)
=

Ω2R2

c2
(1 − 3ε) .

Deduce that the rate of precession, with respect to coordinate time t, of the
perihelion of the nearly circular Earth orbit is approximately 3Ω̃3T 2, where T
is the time taken for light to travel from the Sun to the Earth and Ω̃ is the
orbital angular frequency of the Earth with respect to coordinate time.
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Question 2Y - Astrophysical Fluid Dynamics

(i) Explain under which physical conditions sound waves and shocks are
generated.

Give at least three astrophysical examples where shocks occur and describe
their astrophysical significance.

Assume that the properties of a fluid change discontinuously within a small
layer dx along the x-axis. On the left side of this layer fluid has pressure p1,
density ρ1 and velocity u1 along the x-axis and on the right side p2, ρ2 and
u2 respectively. From the continuity and momentum equations derive the first
two Rankine-Hugoniot relations.

In the case of an adiabatic shock derive the third Rankine-Hugoniot relation
from the energy equation.

(ii) Derive an expression for the compression factor ρ2/ρ1 in the case of a
strong isothermal shock, where ρ1 and ρ2 are the densities either side of the
shock.

Derive the corresponding expression for a strong adiabatic shock and give
a physical explanation for the different results.

Now consider a fluid that undergoes an adiabatic strong shock but then
gradually cools downstream of the shock. Show that the ratio of ram pressure
to thermal pressure is always ≤ 1

2
(γ − 1), where γ is the adiabatic index.

Consider a fluid that is separated by an infinitesimally thin boundary. On
the left of this boundary the fluid density is ρ1 and the fluid pressure is p1,
while on the right of the boundary the fluid density is ρ2 < ρ1 and the pressure
is p2 < p1. On both sides of the boundary the fluid is at rest. At time t = 0
the boundary is removed. Describe qualitatively what you expect to happen
and also what happens in the limit p2 = p1.

TURN OVER...

3
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Question 3X - Physical Cosmology

(i) Consider two Friedmann-Robertson-Walker cosmological models.

Model A: Λ �= 0, ρ = ρmat and p = pmat = 0.

Model B: Λ = 0, ρ = ρmat + ρvac and p = pmat + pvac = −ρvac c2.

Show that, with an appropriate relation between Λ in model A and ρvac in
model B, the two models are the same.

(ii) In Big Bang nucleosynthesis the following reactions take place

n ↔ p+ + e− + νe ,

n + e+ ↔ p+ + νe ,

n + νe ↔ p+ + e− .

Assuming that the particles are non-relativistic and the reactions are in equi-
librium show that the neutron to proton ratio is given by

nn

np
=

(
mn

mp

)3/2

exp

[
−(mn − mp)c

2

kBT

]
,

where T is the temperature, kB is Boltzmann’s constant, mn is the mass of
the neutron and mp is the mass of the proton. What is nn/np when k

B
T �

(mn − mp)c
2 ?

As the Universe cools these reactions stop creating neutrons. Explain why
this happens.

If neutron creation stops at the freeze-out temperature Tf , estimate nn/np

at this time using (mn − mp)c
2 = 1.3MeV and kBTf = 0.8MeV.

Describe the nucleosynthesis process after freeze-out and explain why this
process ends.

Assume that at freeze-out the age of the Universe is 10 s and at the end of
nucleosynthesis the age of the Universe is 300 s. If the half-life of a neutron is
615 s estimate the final value of nn/np.

Show that at the end of nucleosynthesis the abundance of helium by mass
is

Y = 2

(
1 +

np

nn

)−1

and find its value.

4
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Question 4Z - Structure and Evolution of Stars

(i) The luminosity of the Sun is produced by the conversion of hydrogen
to helium. In the process 0.7% of the hydrogen rest mass energy is released.
Estimate the number of hydrogen nuclei which are consumed each second.

The nuclear reactions involved in the conversion release three neutrinos per
hydrogen nucleus consumed. Given that the neutrino collision cross-section is
negligibly small, derive an expression for the total number of neutrinos which
pass per day through a 30 meter diameter neutrino detector on Earth.

Only about five neutrinos are detected per day by the detector, roughly
one third of the expected number. What could be the reason?

(ii) A star of total mass M has a fully convective core of mass Mcore with
adiabatic index γ where all the nuclear energy generation occurs. The core is
surrounded by a radiative envelope of constant opacity κ and where pressure
support P (r) at radius r is given by

P (r) = Prad(r) + Pgas(r) = Prad(r) + β P (r) ,

with Prad(r) the radiation pressure, Pgas(r) the gas pressure and β is a constant
satisfying β < 1. By considering the continuity of the temperature gradient
at the boundary between the convective core and the radiative envelope, show
that

γ − 1

γ
GMcore (1 − β) =

κ L

16πc
,

where G is the gravitational constant, L is the luminosity of the star and c is
the velocity of light.

Show that in the radiative envelope

dPrad

dP
=

κL

4πGMc
=

L

LEdd
,

where LEdd is the Eddington luminosity of the star.

Hence deduce that the fractional mass in the core is given by

Mcore

M
=

γ

4(γ − 1)

and estimate this fraction for plausible values of γ.

TURN OVER...
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Question 5Y - Statistical Physics

(i) Give expressions for the equation of state and the internal energy of a
monatomic ideal gas.

Briefly describe the Carnot process and sketch the cycle in the P, V (pres-
sure, volume) plane and in the T, S (temperature, entropy) plane.

(ii) The Diesel cycle is an idealised version of the process realised in a
Diesel engine. It consists of the following four reversible steps applied to a
gas with fixed number of particles N : A→B adiabatic compression; B→C
expansion at constant pressure; C→D adiabatic expansion; D→A cooling of
the gas at constant volume. The efficiency of the cycle is defined as

η =
Qin − Qout

Qin
,

where Qin is the heat entering the gas in step B→C and Qout is the heat leaving
the gas in step D→A. Consider the Diesel cycle for the case of a monatomic
ideal gas. Sketch the cycle in the P, V (pressure, volume) plane quantifying
the shape of the lines in each step.

Calculate the efficiency η as a function of the temperatures at points A, B,
C and D.

Express the efficiency in terms of the so-called compression ratio r and
cut-off ratio α defined in terms of the volume at the various points as

r =
VA

VB

, α =
VC

VB

.

6
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Question 6Y - Principles of Quantum Mechanics

(i) Let x̂, p̂ and H(x̂, p̂) = p̂2/2m + V (x̂) be the position operator, mo-
mentum operator and Hamiltonian for a particle of mass m moving in one-
dimension. Let |ψ〉 be a state vector for the particle. The position and mo-
mentum eigenstates are connected by

〈x|p〉 =
1√
2π�

e ipx/� ,

where 〈x|x′〉 = δ(x − x′) and 〈p|p′〉 = δ(p − p′). Show that

〈x|p̂|ψ〉 = −i�
∂

∂x
ψ(x) ,

〈p|x̂|ψ〉 = i�
∂

∂p
ψ̃(p) ,

where ψ(x) and ψ̃(p) are the wavefunctions in the position representation and
momentum representation respectively.

(ii) Using the definitions of part (i), show how ψ(x) and ψ̃(p) may be
expressed in terms of each other.

Hence for general V (x̂), express 〈p|V (x̂)|ψ〉 in terms of ψ̃(p) and so write
down the time-independent Schrödinger equation in the momentum represen-
tation that is satisfied by ψ̃(p).

Consider now the case V (x) = −(�2λ/m)δ(x), λ > 0. If there is a bound
state with energy E = −ε, ε > 0, show that the wavefunction ψ̃(p) satisfies

ψ̃(p) =
�λ

π

1

2mε + p2

∫ ∞

−∞
ψ̃(p′)dp′ .

Hence show that there is a unique value for ε and determine what it is.

TURN OVER...

7
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Two compact objects of mass m1 and m2 orbit about their common
centre-of-mass in elliptical orbits. Show that the equation of motion for their
relative separation r is identical to the equation of motion for a single test
particle in an elliptical orbit about a body of mass M = m1 +m2. Hence show
that for the Earth-Moon system, where m1/m2 ≈ 1/80, naive use of Kepler’s
third law would yield a period about 4 hours too long.

Find the amplitude of the angular oscillation in the apparent direction of
the Sun as viewed from the Earth due to the Earth-Moon orbit.

(ii) Approximate the Local Group of galaxies as an isolated binary system
of two point masses corresponding to the Milky Way and M31. Use the result
from part (i) to analyse their relative separation r as a function of time t and
the total mass M of the system. Show that for a Keplerian orbit the energy
per unit mass E and orbital angular momentum per unit mass L are given by

E = −GM/2a , L =
[
GMa(1 − e2)

]1/2
,

where a is the semi-major axis and e the orbital eccentricity. Hence show that
T12, the time taken for their separation to change from r1 to r2 satisfies

T12 =
1(

GMa
)1/2

∫ r2

r1

rdr(
e2 − (r/a − 1)2

)1/2
.

Using the substitution r = a(1− e cos χ), or otherwise, show that the time
t since periastron (at χ = 0) is given by

t =

(
a3

GM

)1/2

(χ − e sinχ) .

Assuming that both galaxies are on radial orbits (e = 1) and that they
started off together at time t = 0, show that the current orbital phase angle χ
is defined by the observables r, t, v, through

t v

r
=

(χ − sinχ) (1 + cosχ)1/2

(1 − cosχ)3/2
,

where t is the current age of the Universe, r is their current separation and v
is the observed radial velocity of M31 towards the Milky Way.

For r = 785 kpc, v = 110 km s−1 and t = 13.7 Gyr, show that a value of
χ ≈ 240◦ is consistent with these observables and hence determine the total
mass of the Local Group.

8
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Question 8Z - Topics in Astrophysics

(i) Charon is a satellite of Pluto with an orbital period of 6.4 days. The
maximum angular distance of Charon from Pluto was observed to be 0.8 arcsec
when Pluto was at a distance of 30 au from the Earth. If the mass of Charon
is much less than that of Pluto and Charon is on a circular orbit, determine
the distance of the satellite from Pluto and the mass of Pluto in units of Earth
mass.

As observed from the Earth, the orbit of Charon about Pluto traces out an
ellipse with axial ratio b/a = 0.5. Estimate the amplitude of the line-of-sight
velocity variation of Charon.

(ii) A planet is in a circular orbit of radius R about a Solar-type star.
Assume the star acts like a perfect black body of effective temperature Teff =
5800 K. If the planet also acts as a perfect black body, is in thermodynamic
equilibrium and has no other source of internal energy generation, find an
expression for the effective surface temperature of the planet.

Estimate these surface temperatures for an Earth-like planet at distance
of 1 au from the star and for a Pluto-like planet at a distance of 30 au from
the star. What are the approximate wavelengths at which the emission is a
maximum? You may assume that for a Solar-type star the maximum emission
occurs in the visible part of the spectrum at λ = 0.55 μm.

Sketch the relative black body curves for a Pluto-like planet compared to a
Solar-type star and use these to help argue why in practice most of the visible
part of the spectrum from such a planet is due to reflected starlight.

END OF PAPER

9
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Question 1X - Relativity

(i) Use the expression for the Christoffel connection Γa
bc in terms of the

metric tensor for the Friedmann-Lemâitre-Roberston-Walker space-time in units
with c = 1 and with line element

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) ,

to show that Γ1
01 = ȧ/a and Γ0

01 = 0.

(ii) For the Friedmann-Lemâitre-Roberston-Walker metric from part (i)

G0
0 = −3ȧ2/a2 and G1

1 = −2ä/a− ȧ2/a2 ,

where Ga
b is the Einstein tensor. Verify by direct calculation that ∇bGa

b = 0.

Solve the vacuum Einstein equations in the presence of a cosmological
constant to determine the form of a(t).

2



Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a vertical patch of the Earth’s atmosphere where the gas is
isothermal, in hydrostatic equilibrium and characterized by a mean molecular
weight µ. What forces are acting on the gas?

From the balance of these forces deduce how gas density ρ(z) varies with
the vertical height z.

Does this equation always hold as you consider vertical heights further and
further away from the Earth’s surface? If it does hold, explain the physical
reasons why this is the case. If it does not hold, explain why and deduce what
sets the vertical height where the equation breaks down.

(ii) A galaxy cluster contains dark matter and a hot ionized gas component.
Assuming the gas is well described by the ideal fluid approximation, derive how
the total enclosed mass M(< r) within radius r depends on the gas density
and temperature profiles ρ(r) and T (r). You may assume that hydrostatic
equilibrium holds and that the system is spherically symmetric.

Now consider that the dark matter density profile ρDM(r) is described by
a Navarro, Frenk and White (NFW) profile such that

ρDM(r) = ρcrit
δc

(r/rs)(1 + r/rs)2
,

where ρcrit is the critical density of the Universe today, δc is a characteristic
overdensity and rs is a scale radius. Under the simplifying assumptions that the
gas is isothermal and that its self-gravity can be neglected, derive an expression
for the gas density profile ρ(r) as a function of radius r and gas temperature
T .

Compare the functional form of ρDM(r) and ρ(r) as r goes to zero and
discuss at a qualitative level why the central gas density profile does not follow
the dark matter distribution.

TURN OVER...
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Question 3X - Physical Cosmology

(i) A volume V of a universe contains material with an internal energy U
and pressure p. Assume that as the universe expands the energy of a comoving
volume is conserved. Derive the fluid equation

ρ̇+ 3
Ṙ

R

[
ρ+

p

c2

]
= 0 ,

where R is the scale factor, ρ is the density and dots denote differentiation
with respect to cosmic time.

(ii) A population of sources has a redshift-independent comoving number
density n0 and luminosities as a function of frequency ν given by

L(ν) = L(ν0)

(
ν

ν0

)−α

,

where L(ν0) is a fiducial luminosity at frequency ν0. Show that the observed
flux density S(ν0) of sources at frequency ν0 is given by

S(ν0) =
L(ν0)(1 + z)1−α

4πdL
2

.

Now show that for α > −3/2 in an Einstein-de Sitter (Λ = 0, Ω = 1) universe
the integrated background intensity at frequency ν0 from this population of
sources distributed out to very high redshift is

I(ν0) ≈
2 c n0L(ν0)

H0(2α+ 3)
,

where H0 is the Hubble constant and I(ν0) has units of flux per unit solid
angle.

Explain what happens when α ≤ −3/2.

[ You may assume that the comoving distance dC is related to the luminosity
distance dL by dC = dL/(1 + z) and that a comoving volume element for an
observed solid angle of dψ is dV = dC

2 dψ c dz/H(z). ]

4



Question 4Z - Structure and Evolution of Stars

(i) A gas giant planet orbits a 1M� Solar-type star and transits in front of
the star once every 3.5 days. The figure shows the light curve of the transit.
From the depth of the eclipse calculate the radius of the planet in units of
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Structure and Evolution of Stars: Examples I

Example 1 Suppose the space density of stars within the Galaxy is 0.1/pc3.

(i) How many stars would you see per square degree in a direction where the Galaxy extends to
(a) 100 pc, (b) 1000 pc and (c) 10 000 pc?

At 50 pc from the Sun there is a cluster of ∼3000 stars, occupying (uniformly) a sphere of radius 1.25 pc.

(ii) If in that direction the Galaxy extends to 250 pc, how many field stars will occupy the same apparent
area as the cluster? How many will be in front and how many behind?

About 2% of the stars, in both the field and the cluster, can be identified spectroscopically as being
virtually identical to the sun.

(iii) If the absolute magnitude of the Sun is 4.75, what is the apparent magnitude of the solar-type stars
in the cluster? And what is the apparent magnitude of (a) the brightest and (b) the faintest, of the
solar-type field stars projected on the cluster?

(iv) Sketch a histogram of the cumulative apparent magnitude distribution of the solar type stars, both
in the cluster and the field, putting them in ‘bins’ of width 0.5 mag. For the field component, show
that the number of stars in successive bins should increase by very nearly a factor of two per bin.

Example 2 A star is traveling at 5 km/sec transverse to the line of sight at a a distance of 10 pc.

(i) What is its proper motion, in seconds of arc per century (′′/cy)?

Suppose the Galaxy is rotating rigidly, once per 108 yrs.

(ii) Find the proper motion of any star in the plane of the Galaxy, as measured relatively to a (suppos-
edly) fixed background of extragalactic objects

Example 3 A gas planet is orbiting a 1 M" solar type-star and transits in front of the star once every 3.5 days. The
lightcurve of the transit is shown below (see figure; from Charbonneau et al 2000).

(i) From the depth of the eclipse, calculate the radius of the planet, assuming it is completely dark.

(ii) What other information might be inferred from the shape of the lightcurve?

(iii) Suppose the brightness of the star is measure with a CCD in which each photon generates one
measurable electron (“count”). How many counts are needed to get the same accuracy as shown
in the plot (i.e. errors of ∼0.002 on the relative flux, assuming Poisson statistics)? How does that
compare to the maximum counts in a CCD of ∼60 000 per pixel?

The mass of the planet is 0.001 M" (about the mass of Jupiter)

(iv) Calculate the radial velocity amplitude of the star due to the orbiting planet.

1

Earth radii, assuming that radiation from the planet is negligible.

Explain briefly what other information might be inferred from the shape
of the light curve.

If the mass of the planet is 0.001M�, calculate the amplitude of perturba-
tions to the radial velocity of the star due to the orbiting planet.

(ii) A star of mass M and radius R is in hydrostatic equilibrium. Derive a
general expression for the gravitational potential energy U of the star.

For the special case of stars with density profile ρ(r) ∝ r−α , find U in
terms of the mass and radius of the star and comment on the allowed ranges
of α.

TURN OVER...
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For an ideal gas show that the total thermal energy of a star is given by

K =

∫ R

0

3

2
P (r) 4πr2 dr ,

where P (r) is the pressure at radius r. Hence derive a relation between U and
K and explain the physical meaning of the result.

Use this to derive an expression for the average temperature T of the star
and estimate T for a star with mass M�, radius R�, mean molecular weight
µ = 0.6 and where ρ(r) ∝ r−2 .

6



Question 5Y - Statistical Physics

(i) Briefly describe what is meant by the canonical ensemble and define
the probability distribution of the state of the system. What is the partition
function Z of the ensemble?

Consider a harmonic oscillator in one spatial dimension with energy eigen-
values En

En =

(
n+

1

2

)
~ω ,

in contact with a heat reservoir of temperature T , where ω is the oscillation
frequency. Show that the partition function is

Z = exp (−β~ω/2)[1− exp (−β~ω)]−1, (∗)

where β = (kBT )−1 and kB is Boltzmann’s constant.

[ You may assume that
∑∞

i=0 x
i = (1− x)−1 for x < 1. ]

(ii) Consider the harmonic oscillator of part (i), the Hamiltonian H of
which is

H =
p2

2m
+
m

2
ω2x2 ,

where p and x are the momentum and position of the oscillator and m is the
mass. Calculate the partition function Z, the mean energy 〈E〉 and the energy
fluctuation ∆E2 = 〈 [E − 〈E〉 ]2〉 using classical statistics.

Using equation (∗), or otherwise, calculate 〈E〉 and ∆E2 using quantum
statistics.

Discuss the classical and quantum mechanical results for 〈E〉 and ∆E2 in
the low- and the high-temperature limits.

[ You may assume the following integral
∫ ∞
−∞ e−ax2

dx =
√
π/a for a > 0 . ]

TURN OVER...
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Question 6Y - Principles of Quantum Mechanics

(i) Let the Hamiltonian of a simple harmonic oscillator be

H0 = ω
(
a†a+ 1

2

)
,

where units are such that ~ = 1, and a and a† are respectively the annihilation
and creation operators with [a, a†] = 1. Explain what properties the eigenstates
|n〉 of H0 must satisfy and deduce the eigenenergies for these states.

Show that

a|n〉 =
√
n|n− 1〉 , a†|n〉 =

√
n+ 1|n+ 1〉 .

(ii) Consider a system whose unperturbed Hamiltonian is the sum of those
for two independent harmonic oscillators given by

H0 =
(
a†a + 1

2

)
+ 2

(
b†b+ 1

2

)
,

where [a, a†] = 1, [b, b†] = 1 and all other commutators are zero. Find the
degeneracies of the eigenvalues of H0 with energies E0 = 3

2
, 5

2
, 7

2
, 9

2
and 11

2
.

The system is perturbed so that it is now described by the Hamiltonian

H = H0 + λH ′,

where H ′ = (a†)2b+ a2b†. Using degenerate perturbation theory calculate the
energies of the levels associated with E0 = 9

2
to lowest order in λ.

Write down the eigenstates correct to O(λ) associated with these perturbed
energies.

By explicit evaluation show that they are in fact exact eigenstates of H
with these energies as eigenvalues.

8



Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) What are the main components of the Milky Way? Describe briefly
how the masses of the individual components are determined and why this
indicates the need for dark matter.

(ii) In the halo of the Milky Way several so-called hypervelocity stars have
been discovered moving with speeds close to, or above, the estimated Galactic
escape velocity. It is conjectured that these were ejected from the centre of
the Galaxy where they interacted with the central supermassive black hole of
mass MBH = 4× 106M�. Estimate the initial speed such a hypervelocity star
can attain if it originated in the tidal disruption of a stellar binary system
with equal mass stars of mass 1M� separated by 2 au falling in on a parabolic
trajectory to within 1 au of the central black hole.

Assume the Galactic rotation curve v(r) is well described by

v2(r) =
v2

c

(1 + r2/r2
h)

1/2
,

where vc = 200 km s−1 is the asymptotic circular velocity at small radii and
rh = 100 kpc is the outer scale radius of the Halo. Show that the Galactic
potential φ(r) is given by

φ(r) = −v2
c ln

[
(1 + r2/r2

h)
1/2 + 1

r/rh

]
,

and hence find an expression for the Galactic escape velocity as a function of
radius r.

A star is observed in the Halo at a distance r = 10 kpc moving with a radial
velocity of 700 km s−1. Can the star escape from the Galaxy?

TURN OVER...

9



Question 8Z - Topics in Astrophysics

(i) The Swift satellite has monitored the centre of the Milky Way for an
average of 1100 seconds on 715 separate occasions over the five years from
2006-2011. The satellite detected a total of 6 X-ray flares over this period.
Assume that these flares are due to accretion of gas clouds, each 1/1000th of
an Earth-mass, onto the MBH = 4 × 106M� black hole at the centre of the
Milky Way and that the radiative efficiency is 10%. Estimate how much mass
has been accreted over this period and make a rough estimate of the average
luminosity of each event assuming the gas is in free-fall from ≈10 Schwarzschild
radii.

If the overall accretion rate is ∝MBH estimate how long would it take the
central black hole to double in mass assuming a sufficiently steady supply of
similar gas clouds. Comment on your answer.

(ii) Active Galactic Nucleii (AGN) are powered by accretion of matter onto
a supermassive black hole. The non-thermal continuum observable from the
central region can be characterised by a power law of the form

f(ν) dν ∝ ν−αdν ,

where f(ν)dν is the luminosity radiated between frequencies ν to ν + dν and
α ≈ 0.5 is the power law index. Neglecting the flux from any AGN emission
lines, find an expression for the g − r colour in magnitudes as a function of
redshift if the photon detection efficiencies in the g passband (400nm < λ <
550nm) and in the r passband (550nm < λ < 700nm) are the same, constant
as a function of wavelength across each band, and the magnitude system in
each band has the same zeropoint.

Sketch how the g−r colour varies as a function of redshift z over the range
0 < z < 5 commenting on other factors that could influence the observed AGN
colour.

The number Φ(L)dL of AGN in the luminosity range L to L+ dL is well-
described by a Schechter function such that

Φ(L)dL =
Φ∗

L∗

(
L

L∗

)−β

e−L/L∗ dL ,

10



where Φ∗ is the volume number density of sources at the AGN characteristic
luminosity L∗ and β characterises the faint-end slope. If the far ultra-violet of
the power law continua of AGN is a significant contributor to the cosmological
background ionising flux, by what factor would this contribution alter if the
faint-end slope changed from β = 0.5 to β = 1.5?

In these two cases which AGN luminosities contribute most to the total
AGN ionising flux?

What happens if the faint-end slope steepens to β = 2?

END OF PAPER
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Question 1X - Relativity

(i) The vector field V a is the normalised VaV
a = −c2 tangent to a congru-

ence of timelike geodesics and Bab = ∇bVa. Show that

V aBab = V bBab = 0

and that
V c∇cBab = −Bc

bBac − Rd
acbV

cVd .

[ Hint: the relevant Ricci identity is ∇c∇bXa = ∇b∇cXa − Rd
acbXd .]

(ii) Use the results from part (i) and assume that Bab is symmetric. Now

let θ = Ba
a and show by writing Bab = B̃ab + 1

4
θgab, or otherwise, that

dθ

dτ
≤ −1

4
θ2 −R00 ,

where R00 = RabV
aV b and

dθ

dτ
≡ V a∇aθ.

Assume in addition that the stress-energy tensor Tab takes the perfect fluid
form (ρ+ p/c2)VaVb + pgab and that ρc2 + 3p > 0. Show that

dθ−1

dτ
>

1

4

and deduce that, if θ(0) < 0, then |θ(τ)| will become unbounded for some
value of τ less than 4/|θ(0)|.

[ You may use without proof the result that B̃ab B̃
ab ≥ 0 . ]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a star of mass M subject to a spherically symmetric inflow
of isothermal gas with a sound speed cs. If the radial velocity of the flow is
u show from the continuity and momentum equations that the Mach number
M = u/cs satisfies (

1

M −M
)
dM
dr

=
GM

c2sr
2
− 2

r
,

where r is radial distance from the star and G is the gravitational constant.

The general solution to this equation is given by

M2 − lnM2 = 4ln
r

rs
+ 4

rs
r

+ C , (∗)

where C is a constant and rs = GM/2c2s is the sonic radius. Consider solutions
that correspond to the spherical inflow to a star (Bondi accretion) and subsonic
wind outflow from a star. Sketch these solutions in the (r/rs,M) plane and
discuss their physical meaning.

Calculate the value of the constant C for these two cases.

(ii) Using the results from part (i), consider now a steady subsonic wind
emanating from the surface of the Sun at radius R⊙. Assume the gas is fully
ionized, has mean molecular weight µ = 0.6, temperature T = 106K and
proton number density np = 108 cm−3 at the Solar surface. With the aid of
equation (∗), or otherwise, roughly estimate the mass flow per unit time Ṁ of
the Solar wind as it leaves the Solar surface.

Assuming that the wind stays steady as it reaches the Earth, estimate the
proton number density of the Solar wind at the Earth’s location.

A small cloud G2 of density ρc = 6×10−19g cm−3 has been detected moving
with a velocity v on a highly eccentric orbit towards the supermassive black
hole at the centre of our Galaxy. Derive an expression for the binding energy
of this cloud per unit mass.

Deduce if G2 is gravitationally bound to the black hole, or not, assuming a
central black hole mass MBH = 4×106 M⊙, a pericentre distance of 4×1015cm
and velocity at pericentre of 5250 km s−1.

TURN OVER...
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The supermassive black hole is surrounded by a tenuous and hot gaseous
atmosphere, where the gas density profile is given by

ρhot(r) = ρ0

(
r0
r

)
= 1.7 × 10−21

(
1016cm

r

)
g cm−3 .

Assuming that the gas is roughly in hydrostatic equilibrium within the po-
tential of the black hole, derive an expression for the gas temperature profile
Thot(r).

Under adiabatic conditions calculate the gas sound speed as a function of
distance from the black hole and determine if the G2 cloud is moving sub- or
super-sonically through this medium at pericentre. You may assume a mean
molecular weight µ = 0.6 and an adiabatic index γ = 5/3.

If the G2 cloud is not losing mass as it orbits through the hot atmosphere it
adjusts to be in rough pressure equilibrium with the surroundings. Given that
the cloud temperature Tc = 104K is roughly constant due to photo-ionization
equilibrium, deduce how the cloud density ρc and radius Rc change as the
cloud moves inwards.

List at least three fluid dynamic processes that can lead to mass loss from
the cloud as it moves towards the black hole.

4
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Question 3X - Physical Cosmology

(i) Explain what is meant by the term particle horizon.

Show that in a Friedmann-Robertson-Walker cosmology a flat universe
which started to expand at time t = 0 has a proper horizon given by

dH(t) = R(t)

∫ t

0

cdt′

R(t′)
,

where R(t) is the scale factor.

Find dH for a matter-dominated universe.

Assume that at last scattering the age of a matter-dominated universe is
t = 4×105 years and z = 1000. Estimate the physical horizon size at the epoch
of last scattering and its physical size today. Hence calculate the angular size
on the sky subtended by this distance and use your result to explain the so-
called horizon problem.

(ii) For a Friedmann-Robertson-Walker cosmology show that

|Ω − 1| =
|k| c2
H2R2

,

where Ω is the density parameter, k is the curvature, H is the Hubble param-
eter and R is the scale factor.

What is the time dependence of H2R2 for a universe dominated by either
radiation or matter? Use these results to explain the so-called flatness problem.

During inflationary expansion what is the time dependence of the scale
factor? Show how this time dependence solves the flatness problem.

Using
R̈

R
= −4πG

3

(
ρ+

3p

c2

)
,

where G is the gravitational constant, show that the equation of state p =
−ρc2, where p is the pressure and ρ the density, results in inflationary expan-
sion.

Explain briefly how an early period of inflation can also resolve the horizon
problem.

TURN OVER...
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Question 4Z - Structure and Evolution of Stars

(i) The radiation emitted by a black body at temperature T is given by

fνdν =
8πh

c3
ν3dν

ehν/kBT − 1
,

where fνdν is the energy density of the radiation for frequencies from ν to
ν + dν, kB is Boltzmann’s constant, h is Planck’s constant and c the speed of
light. Find the equivalent black body expression in terms of fλdλ, the energy
density at wavelengths from λ to λ+ dλ.

Hence derive an approximation for the blackbody spectrum valid at long
wavelengths (hc≪ λ kBT ) and use this to explain why limb darkening in stars
is less pronounced at longer wavelengths.

(ii) Explain what is meant by radiative opacity and briefly discuss the main
sources of radiative opacity in main sequence stars, distinguishing between line
and continuum opacity.

In the centre of cool white dwarfs composed of pure carbon, detailed cal-
culations show that the conduction opacity can be described as

κcond ≃ 5 × 10−7

(
T

ρ

)2

cm2 g−1 ,

where T is the temperature and ρ is the density. By assuming that radiative
opacity is dominated by Thompson scattering, show that in the centre of such
stars, where T = 107 K and ρ = 106 g cm−3, conduction completely dominates
energy transport.

6
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Question 5Y - Statistical Physics

(i) The free energy F is defined in terms of the energy E, temperature T
and entropy S by F = E − TS. Derive the Maxwell relation(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

,

where P and V respectively denote the pressure and volume of the system.

Show that for a function f(x, y) with (∂f/∂x)y 6= 0(
∂x

∂y

)
f

= −(∂f/∂y)x

(∂f/∂x)y

,

and use this to show that (
∂V

∂T

)
P

= −(∂P/∂T )V

(∂P/∂V )T

.

(ii) Consider a thermodynamic system with fixed particle number N with
the system characterised uniquely by two variables from temperature T , pres-
sure P , volume V , energy E and entropy S. Using the results from part (i),
verify that the specific heat at constant volume CV and the specific heat at
constant pressure CP are given by

CV = T

(
∂S

∂T

)
V

, CP = T

(
∂S

∂T

)
P

,

and show that

CP − CV = T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

.

Hence for an ideal gas show that

CP − CV = NkB ,

where kB is Boltzmann’s constant and briefly interpret this result.

The Van der Waals’ equation of state can be written as

P =
NkBT

V − bN
− aN2

V 2
,

where a and b are positive constant parameters. Show that for a

TURN OVER...
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Van der Waals’ gas

CP − CV = NkB

[
1 − 2(V − bN)2aN

V 3kBT

]−1

.

For a, b ≪ 1 find the fractional correction, linear in N , compared to the
ideal gas case.

Many gases are well described by the Van der Waals’ equation with

a =
27

64

(kBTcr)
2

Pcr

,

with the critical temperature and pressure

Pcr = 71.5 bar , Tcr = 304.2 K .

Using these values, give an order-of-magnitude estimate for the percentage
deviation of the Van der Waals’ result at room temperature and pressure for
CP − CV from the value obtained for an ideal gas.

8
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Question 6Y - Principles of Quantum Mechanics

(i) Let J = (J1, J2, J3) and |j,m〉 denote the standard angular momentum

operators and states with units such that ~ = 1. Show that U(θ) = e−iθJ2 is
unitary.

Defining Jk(θ) = U(θ) Jk U
−1(θ) for k = 1, 2, 3, show that

J3(θ) = J3 cos θ + J1 sin θ

and find the corresponding expressions for J1(θ) and J2(θ) as linear combina-
tions of J1, J2, J3.

Briefly explain why U(θ) represents a rotation of J through angle θ about
the 2-axis.

(ii) Defining |j,m〉θ = U(θ)|j,m〉 and using the results and definitions
from part (i) and the relation

J3|j,m〉 = m|j,m〉 ,

show that
J3(θ)|j,m〉θ = m|j,m〉θ . (∗)

Hence express |1, 0〉θ as a linear combination of the states |1, m〉, where
m = 1, 0,−1 and make use of equation (∗) to determine the coefficients in
this expansion. You may assume that for J± = J1 ± iJ2 the following relation
applies

J± |j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉 .

A particle of spin 1 subject to the Hamiltonian

H = −µB · J ,

with B = (0, B, 0), is in the state |1, 0〉 at time t = 0. At time t the value of
J3 is measured and found to be J3 = 0. At time 2t the value of J3 is measured
again and found to be J3 = 1. Show that the joint probability for these two
values to be measured is

1

8
(sin 2µBt)2 .

TURN OVER...
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Explain how dynamical friction works and discuss its importance in the-
ories of structure formation. What observational evidence is there to support
this picture?

(ii) A self-gravitating spherically symmetric dark matter halo of density
ρ(r), made up of discrete particles of equal mass m, satisifies the isotropic
distribution function

f(r, vm) =
n0

(2πσ)3/2
exp

(
ψ(r)

σ2
− v2

m

2σ2

)
,

where n0 is a constant, ψ(r) is the gravitational potential at radius r, vm =
|vm| is the velocity of dark matter particles and σ their isotropic velocity
dispersion. Use Poisson’s equation to solve for ρ(r) and hence show that a
singular isothermal sphere is a solution of this system.

A body of mass M , where M ≫ m, moves with velocity vM through this
dark matter halo. The total deceleration of the body along the direction of
vM due to dynamical drag is

dvM

dt
= −8π2ln(1 + Λ2)G2Mm

(∫ vM

0

f(r, vm)v2
mdvm

)
vM

v3
M

,

where vM = |vM|, G is the gravitational constant and Λ ≫ 1 and is constant
throughout the halo. If the body is on a circular orbit write down an expression
for the drag force acting on the body at radius r.

A satellite galaxy of mass M = 5 × 109M⊙ is on a circular orbit at radius
r = 50 kpc in this dark matter halo. Find a general expression for the time it
will take such a satellite to fall to the centre of the halo and evaluate the time
taken for the specific case given if the Coloumb logarithm lnΛ = 5.

[ You may assume that
∫ ∞
−∞ e−x2/2σ2

dx =
√

2 πσ2 , erf(X) = 2√
π

∫ X

0
e−x2

dx

and that erf(1) = 0.8427 ]

10
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Question 8Z - Topics in Astrophysics

(i) The effective potential for a satellite orbiting in the plane of the rotating
Earth-Sun coordinate system can be approximated as

φ(r, θ) = −GM⊙

r
− GM⊕

(r2 +D2 − 2rD cos θ)1/2
− 1

2
r2ω2 ,

where r is the distance of the satellite from the Sun, θ the angle of the satellite
relative to the Sun-Earth vector, ω the angular orbital velocity of the Earth
and D the distance of the Earth from the Sun, assumed to be constant. The
Lagrange points in this system are defined as the locations of the stationary
values of φ(r, θ), with the L1 and L2 Lagrange points lying along the vector
defined by θ = 0. Using the above formalism, or otherwise, show that the
distance DL1 of the near-side Lagrange point and DL2 the distance of the
far-side Lagrange point from the Earth satisfy

DL1 ≃ DL2 ≃ D

(
M⊕

3 M⊙

)1/3

. (∗)

(ii) The Gaia satellite was launched on 19th December 2013 and is now at
the L2 Lagrange point of the Earth-Sun system. Estimate the distance of the
satellite from the Earth using the expression (∗).

What is the angular motion of the satellite as seen from the Earth in arcsec
per hour with respect to the distant background stars?

Assume that whilst the Gaia satellite is at L2 the sunshield of the spacecraft
acts as a perfect diffuse reflective surface with an effective area AG of 15m2

towards the Earth. Derive an expression relating the apparent magnitude of
the satellite mV to the distance DL2 of L2 and the effective reflective area AG

and estimate the value of mV .

Observations show the satellite to be ten times fainter than predicted.
What is the observed value of mV and suggest why the satellite might ap-
pear fainter than expected.

END OF PAPER
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Question 1X - Relativity

(i) A plane wave space-time has line element

ds2 = Hdu2 + 2du dv + dx2 + dy2 ,

where H = x2−y2. Show that the line element is unchanged by the coordinate
transformation

u = ū, v = v̄ + x̄eū − 1
2
e2ū, x = x̄− eū, y = ȳ . (∗)

(ii) For the plane wave from part (i) show more generally that the line
element is unchanged by coordinate transformations of the form

u = ū+ a, v = v̄ + bx̄+ c, x = x̄+ p, y = ȳ ,

where a, b, c and p are suitably chosen functions of ū which depend in total
on four parameters (arbitrary constants of integration).

Deduce (without further calculation) that the line element is unchanged by
a 6-parameter family of coordinate transformations, of which a 5-parameter
family act in the wave surfaces u = constant.

For a general coordinate transformation xa = xa(x̄b), give an expression
for the transformed Ricci tensor R̄ab in terms of the Ricci tensor Rcd and the

transformation matrices
∂xa

∂x̄c
.

Calculate R̄x̄x̄ when the transformation is given by (∗) and deduce that
Rvv = Rvx.

2
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Question 2Y - Astrophysical Fluid Dynamics

(i) A steady thin axisymmetric accretion disc surrounds a star of mass M
and radius R∗. By considering a portion of the disc in vertical hydrostatic
equilibrium at a distance R from the central star and approximating the verti-
cal pressure gradient as ∂p/∂z ≈ −p/h, where h is the disc scale height, derive
an approximate relation between h, R and the sound speed cs.

The disc is optically thick and radiates as a black body with a temperature
Teff(R) such that

2σ T 4
eff(R) =

3GMṁ

4πR3

[
1 −

(
R∗

R

)1

2

]
,

where σ is the Stefan-Boltzmann constant, G is the gravitational constant and
ṁ is the mass accretion rate through the disc. If the gas temperature is close
to Teff(R), derive how h/R scales with R at large distances (R ≫ R∗) from
the star and sketch an edge-on view of the disc.

By considering the mass in the annulus at R of radial width ∆R, or other-
wise, derive a relation between ṁ, the mass surface density Σ and the radial
velocity uR.

Given that

νΣ =
ṁ

3π

[
1 −

(
R∗

R

)1

2

]
,

where ν = αcsh is the kinematic viscosity and the constant α lies in the range
0 < α < 1, comment on how the radial and azimuthal velocities in the disc
compare to cs.

(ii) By considering a linear shear flow explain at a qualitative level why
viscosity arises in fluids and comment on its temperature dependence.

Describe what is meant by the stress tensor σij and use this to write the
continuity and momentum equations in component form.

If the viscous stress tensor is given by

σ
′

ij = −η
(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
− ζδij

∂uk

∂xk
,

derive the general form of the Navier-Stokes equation.

TURN OVER...

3
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What is the physical meaning of η and ζ and which thermodynamical
variables do they depend on?

An incompressible non-gravitating viscous fluid with a constant shear vis-
cosity η is enclosed between two planes parallel to the x-z plane. One of these
planes is stationary at y = 0 and the other at y = h is moving at a constant
velocity u along the x-axis. Assuming the flow is steady what are the boundary
conditions for the fluid velocity adjacent to the two planes?

Use the Navier-Stokes equation to derive how fluid pressure and velocity
depend on spatial coordinates.

How does velocity vary across the fluid in the presence of a pressure gradient
along the x-axis?

4
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Question 3X - Physical Cosmology

(i) The number density of fermions in thermal equilibrium at temperature
T is given by

n = gs
4π

h3

∫ ∞

0

p2dp[
exp

(
E(p)−µ

kBT

)
+ 1

] ,
where gs is the number of degrees of freedom for the particles with energy E(p),
p is the momentum of a particle, h is Planck’s constant, µ is the chemical
potential and kB is Boltzmann’s constant. Give a brief justification of this
equation.

Explain the physical significance of the chemical potential µ, and for µ = 0
derive an expression for the number density n of non-relativistic fermions as a
function of temperature.

[ You may use the integral
∫ ∞

0
x2e−x2

dx =
√
π/4 .]

(ii) Using the appropriate form of the Friedmann equations and stating
clearly all your assumptions show that at early times the age of the Universe
t is related to the photon temperature T by

t =

(
3c2

32πaG

)1

2 1

T 2
,

where a is the radiation constant andG is the gravitational constant. When did
e−/e+ annihilation occur? Why should this equation not be used to calculate
when inflation started?

Calculate when inflation ends assuming inflation starts at t = 10−36 s and
that during inflation the vacuum energy Λ = 1.2×1051 s2m−2 and the Universe
expands by 60 e-foldings.

The cross-section for neutrino interactions is σ = 3.5 × 10−67 T 2 m2 and
the number density of neutrinos is given by

nν =
3aT 3

8kB

,

where kB is Boltzmann’s constant. Show that the interaction timescale for
neutrinos is

tν = 1.4 × 1051 T−5 s .

At what temperature and at what time did the neutrinos decouple?

TURN OVER...

5
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Question 4Z - Structure and Evolution of Stars

(i) Assume that the light curve of a supernova is dominated by the energy
released in the radioactive decay of an isotope with decay constant λ = τ−1 ln 2,
where τ is the isotope half-life. Show that the slope of the light curve is

d log10 L

dt
= −0.434λ

and derive an analogous expression for the change in bolometric magnitude
with time.

In a core collapse supernova explosion 0.075M⊙ of 56
27Co are produced. The

half-life of 56
27Co is τ = 77.7 days and the energy released by the decay of one

56
27Co atom is 3.72 MeV. If 56

27Co is the dominant isotope responsible for the
supernova light curve, estimate the supernova luminosity both immediately
after the formation of cobalt and one year after the explosion.

(ii) Explain in a few sentences what is meant by the term homology when
applied to the equations of stellar structure including a brief outline of the
mathematical basis of the method.

Consider a set of fully radiative stars with constant opacity κ and uniform
mean molecular weight µ. The energy generation rate per unit mass is given
by ǫ = ǫ0ρ T

16 where ρ is the density, T the temperature and ǫ0 is a constant.
Neglecting radiation pressure and assuming an ideal gas, use an homology
argument to show that for this set of stars the following scaling applies

L ∝ µ4M3 ,

where M is the stellar mass and L the stellar luminosity.

Find the equivalent scalings for R the stellar radius and Tc the central
temperature as a function of µ and M . Hence show that the slope of the
theoretical main sequence for such a set of stars is

d log10 L

d log10 Teff
=

76

9
,

where Teff is the effective temperature.

6
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Question 5Y - Statistical Physics

(i) In the grand canonical ensemble the entropy of a system is given by

S = −kB

∑
i

pi ln pi ,

where kB is Boltzmann’s constant and pi is the probability that the system
is in the state i. Show that the entropy can be calculated from the partition
function Z through

S = kB
∂

∂T
(T lnZ) ,

where T is the temperature.

(ii) The Dietrici equation of state of a gas is given by

P =
kBT

v − b
exp

(
− a

kBTv

)
,

where P is the pressue, v = V/N is the volume divided by the number of
particles, T is the temperature and kB is Boltzmann’s constant. Provide a
physical explanation for the constants a and b. Sketch the locus of lines of
constant temperature in the (P, V ) plane and use this to briefly explain how the
Dietrici equation captures the liquid-gas phase transition. Find the maximum
temperature at which such a phase transition can occur.

The Gibbs free energy is given by G = E + PV − TS , where E is the
energy and S is the entropy. Explain why the Gibbs free energy is proportional
to the number of particles in the system.

If on either side of a first-order phase transition the Gibbs free energies are
equal, derive the Clausius-Clapeyron equation for a line of first-order liquid-gas
phase transitions

dP

dT
=

L

T (Vgas − Vliquid)
,

where L is the latent heat, which you should define, and Vgas and Vliquid are
respectively the gas and liquid volumes.

Assume that the volume of liquid is negligible compared to the volume
of the gas and that the latent heat is constant. If the gas can be well-
approximated by the ideal gas law, derive an equation for the line of first-order
phase transitions in the (P, T ) plane.

TURN OVER...

7
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Question 6Y - Principles of Quantum Mechanics

(i) Define the interaction picture for a quantum mechanical system with
Schrödinger picture Hamiltonian H0+V (t) and explain why both pictures give
the same physical predictions for transition rates between eigenstates of H0.

Derive the equation of motion for the interaction picture states |ψ(t)〉

i~ ∂|ψ(t)〉/∂t = V (t) |ψ(t)〉 , (∗)

where V (t) is the time dependent part of the interaction picture Hamiltonian.

(ii) A system from part (i) consists of just two states |1〉 and |2〉, with
respect to which

H0 =

(
E1 0
0 E2

)
, V (t) = ~ λ

(
0 eiωt

e−iωt 0

)
.

Writing the interaction picture state as |ψ(t)〉 = a1(t)|1〉+ a2(t)|2〉, show that
the interaction picture equation of motion (∗) can be written as

i ȧ1(t) = λ eiµt a2(t) ,

i ȧ2(t) = λ e−iµt a1(t) ,

where µ = ω − ω21 and ω21 = (E2 −E1)/~. Hence show that a2(t) satisfies

ä2 + iµ ȧ2 + λ2a2 = 0 .

Given that a2(0) = 0 show that the solution takes the form

a2(t) = α sin Ωt e−iµt/2 ,

where Ω is a frequency to be determined and α is a complex constant of
integration.

Use this solution for a2(t) to determine a1(t) and by imposing the normal-
ization condition ‖|ψ(t)〉‖2 = 1 at t = 0, show that |α|2 = λ2/Ω2 .

At time t = 0 the system is in the state |1〉. Write down the probability to
find the system in the state |2〉 at time t.

8
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) The Jeans’ equation for a steady-state spherically symmetric system is
given by

d(ν v2
r)

dr
+
ν

r

[
2v2

r − (v2
θ + v2

φ)
]

= −ν dΦ
dr

.

Explain the meaning of the various terms and show how this simplifies for the
case of a non-rotating isotropic system.

If the mass of this system is everywhere dark matter dominated and a
tracer population with constant velocity dispersion has the following density
profile

ρ(r) = ρ0 e
−r2/2a2

,

where ρ0 is the central density and a is a constant scale length, find the enclosed
mass M(< r) as a function of radius r and hence deduce the density profile
ρDM(r) of the dark matter.

(ii) The density ρ(r) of a spherically symmetric globular cluster follows

ρ(r) =

{
ρ0 (r/r0)

−α r ≤ r0

0 otherwise

where ρ0 is a constant density scale factor, r is the radial distance from the cen-
tre, r0 is the limiting radius of the system and α ≥ 0. What is the gravitational
potential of the system for all physically possible values of α?

Assume further that the velocity dispersion is isotropic and that the system
is in a stable dynamical equilibrium. Using the Jeans’ equation from part (i),
or otherwise, find the corresponding velocity dispersion profiles σ(r) of the
cluster.

Comment on any special cases and the range of α that corresponds to
physically realisable solutions.

TURN OVER...
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Question 8Z - Topics in Astrophysics

(i) A primordial gas cloud composed only of H and He has radius R, uni-
form proton number density n and mass M typical of a large galaxy. The cloud
is virialised and has a gas temperature T > 106K where the radiative cooling
of the primordial gas is dominated by bremsstrahlung (free-free) emission with
a cooling time tcool given by

tcool = 2 × 105 T
1/2

n
s .

Equate the dynamical free-fall timescale for such a cloud with the radiative
cooling time and find the radius at which the two timescales are equal.

Comment on the value you obtain.

(ii) Most of the baryons in clusters of galaxies reside in an intra-cluster
medium of hot gas. The temperature of the gas is close to that given by the
virial theorem. If a typical cluster has a virial radius of 1 Mpc and observed
velocity dispersion of 1000 km s−1 estimate the temperature of the gas at the
virial radius assuming the gas is all hydrogen.

X-ray observations show that the hot gas follows a power-law density profile
ρ(r) ∝ r−0.8 and has a temperature profile T (r) ∝ r0.3. If the hot gas is in
hydrostatic equilibrium find the mass profile M(< r) of the cluster and hence
deduce the total mass of the cluster within the virial radius. Compare this
with the mass estimated directly from application of the virial theorem.

If the gas mass fraction is 10%, estimate the gas mass within 1Mpc and
the number density of protons at a radius of 100 kpc.

If the combined absolute magnitude of the cluster galaxies is Mv = −23
estimate the mass-to-light ratio of the cluster out to the virial radius.

END OF PAPER
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