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Question 1X - Relativity

(i) Using the Lorentz transformations derive the equation for the change of
the velocity direction for a particle moving in the xy-plane from one reference
frame to another, where the latter is moving with a relative velocity V along
the x-axis. What form does this equation take in the case of a photon? Hence,
derive from this equation the classical light aberration equation in the limit
V ≪ c.

(ii) A particle of rest mass m collides elastically with a stationary particle
of equal mass. The incident particle has kinetic energy T0. What is its kinetic
energy after the collision if the scattering angle is θ? Assume c = 1.

Now consider the elastic collision of a particle of mass m1 with a stationary
particle of mass m2 < m1. Let θmax be the maximum scattering angle of m1.
In the non-relativistic limit sin θmax = m2/m1. Prove that this result also holds
relativistically.
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Question 2Y - Astrophysical Fluid Dynamics

(i) A sound wave propagates from a medium in which the speed of sound is
c1 and the density is ρ1 to a medium in which the speed of sound is c2 and the
density is ρ2. The direction of propagation is perpendicular to the interface
between the two media. State and explain the boundary conditions that must
be satisfied by perturbations at the interface.

Show that the ratio t of the amplitude of the velocity perturbations of the
transmitted wave to those of the incident wave is

t =
2ρ1c1

ρ1c1 + ρ2c2
.

(ii) An isothermal infinite self-gravitating ideal-gas slab of temperature Ts

is in a state of hydrostatic equilibrium over the range −zs < z < zs where it
has a density profile given by

ρ = ρ0 sech2
( z

H

)
,

where ρ0 is the mid-plane density,

H =
css

(2πGρ0)1/2

and c2ss = R∗Ts/µ with R∗ the gas constant and µ the mean molecular weight
of the gas. For |z| > zs from the mid-plane the same ideal gas is isothermal at
temperature Ta (with Ta ≫ Ts). Show that, when the self-gravity of this hot
atmosphere can be neglected, the hydrostatic density profile for |z| > zs is

ρ = ρ0
Ts

Ta

sech2
( zs
H

)
exp

(
−

4πGρ0H tanh (zs/H) (|z| − zs)

c2sa

)
,

where c2sa = R∗Ta/µ. Explain the boundary condition at |z| = zs.

A sound wave is launched in the hot atmosphere at z > zs and propagates
downwards into the slab. What condition on the wavelength of the disturbance
would mean that its propagation is almost unaffected by the density stratifica-
tion within the atmosphere and within the slab? Write down the propagation
speeds of the disturbances in the atmosphere and the slab in this limit.

Using the result given in part (i), or otherwise, comment on whether dis-
turbances in the hot atmosphere of a disc are likely to heat efficiently cold
material near the mid-plane.

TURN OVER...

3
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Now consider a case in which the slab and atmosphere described above are
supported by magnetic, rather than thermal, pressure. Explain why a purely
vertical magnetic field cannot support the disc.

When the field is purely horizontal with magnitude B(z), find expressions
for B(z) in a slab and atmosphere of the same structure.

[ You may assume without proof that magnetic pressure pB is related to field
strength by pB = B2/2µ0 . ]

4
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Question 3X - Physical Cosmology

(i) In a static infinite Euclidian universe populated with sources of lumi-
nosity L and space density n, show that the total flux S from the sky for
sources up to a distance xmax is

S = nLxmax .

Now consider an expanding universe. A small co-moving space element at
redshift z has volume

dV = R2
0 r

2
e Ω

cdz

H(z)
,

where Ω is a solid angle element, R0 is the scale factor at z = 0, re is the
coordinate distance and H(z) is the Hubble parameter at redshift z. Assuming
an Einstein-de Sitter universe populated with sources of luminosity L and co-
moving space density n, show that the total observed flux S seen from the
whole sky for sources with 0 < z <∞ is

S =
2

5
nL

c

H0

,

where H0 is the Hubble parameter at z = 0. Compare and discuss the two
results.

(ii) In the early Universe the number density n of particle species in equi-
librium with mc2 ≪ kBT at temperature T is given by

n(T ) =
g

(2π~)3

∫
∞

0

f(E)4πp̃2dp̃ ,

where f(E) is given by

f(E) =
1

eE/kBT ± 1
(+ for fermions, − for bosons),

with E the particle energy, p̃ the momentum, g the number of degrees of
freedom and kB Boltzmann’s constant. Show that

ρc2 =
1

2
gaT 4 for bosons and

ρc2 =
7

16
gaT 4 for fermions,

where ρ is the density and a is the radiation constant.

TURN OVER...

5
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Derive similar expressions for the entropy density s(T ).

Let Tb and Ta be the temperature just before and just after electron-
positron annihilation respectively. What is the value of the ratio Ta/Tb?

[You may assume that ∫
∞

0

y3

ey − 1
dy =

π4

15
∫

∞

0

y3

ey + 1
dy =

7π4

120

and that pressure p and density ρ are related by p = ρc2/3.]

6
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Question 4Z - Structure and Evolution of Stars

(i) Explain in a few words what is meant by a P-Cygni line profile.

Use a sketch to illustrate how such a profile arises and explain the necessary
conditions for producing a P-Cygni profile.

What physical parameters can be deduced from the analysis of P-Cygni
profiles?

Consider two stars, both of spectral type O7V. Star 1 has a solar metallicity,
while Star 2 has metallicity 1/100th of solar. Which of the two stars would
you expect to have stronger P-Cygni lines? Give a physical reason for your
answer.

(ii) Explain what is meant by the Kelvin-Helmholtz timescale τKH. Use
the virial theorem to deduce the dependence of τKH on the stellar mass M ,
radius R and luminosity L.

The mass-loss rate in massive stars can be approximated by the expression

Ṁ =
(
ǫ
vesc

c

) LR

GM
,

where vesc is the escape velocity at the surface of the star, c is the speed of
light, G is the gravitational constant and ǫ is an efficiency factor (ǫ ≤ 1). How
does the mass-loss timescale τml compare with τKH?

Show that the rate of energy supply required to sustain a mass-loss rate Ṁ
is much smaller than L.

Find a relation between τml and the nuclear timescale τnuc of the star and
show that for massive stars τml < τnuc.

TURN OVER...
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Question 5Y - Statistical Physics

(i) By considering the number of ways N fermions of total energy E can
be distributed over states i of energy ǫi and degeneracy gi, show that the mean
occupancy n̄i is given by the Fermi-Dirac distribution

n̄i =
gi

eβ(ǫi−µ) + 1
,

where β = 1/kBT , kB is Boltzmann’s constant, T is the temperature and µ is
the chemical potential.

(ii) A semi-infinite thin metal slab occupies z ≤ 0. The space z > 0 is a
vacuum. An electron with momentum (px, py, pz) inside the slab escapes from
the metal in the +z direction if it has a sufficiently large momentum pz to
overcome a potential barrier V0 > 0 relative to the Fermi energy ǫF so that

p2
z

2m
≥ ǫF + V0 ,

where m is the electron mass. At temperature T some fraction of electrons
satisfy this and so give rise to a current density jz in the +z direction. Each
electron escaping provides a contribution δjz = −evz to this current density,
where vz is its velocity and e is the elementary charge. Sketch the Fermi-Dirac
distribution as a function of energy in the limit kBT ≪ ǫF. What does this
mean for the chemical potential µ?

Assume that the electrons behave as an ideal non-relativistic Fermi gas,
that kBT ≪ V0 and that kBT ≪ ǫF. Calculate the current density jz associated
with the electrons escaping from the metal in the +z direction.

How could we easily increase the magnitude of the current?

8
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Question 6Y - Principles of Quantum Mechanics

(i) Consider a composite system of several identical, non-interacting parti-
cles. Describe how the multi-particle state is constructed from single particle
states. For the special case of two identical particles, describe how the inter-
change symmetry leads to the emergence of bosons and fermions.

(ii) A quantum mechanical system consists of two identical particles, each
of which has spin 1. Each single particle i has a spin-independent Hamiltonian
Ĥi = Ĥ(x̂xxi, p̂ppi) with non-degenerate eigenvalues Ej (E0 < E1 < E2 < . . . ) with
corresponding wavefunctions ψj(xxx). In terms of these single particle wave-
functions and single particle spin states |1〉, |0〉 and |−1〉, write down all of
the multi-particle states and energies for both the ground state and the first
excited state.

For a particular two-particle system Ei is a linear function of i. Show that
the degeneracy of the nth excited state can be written as a polynomial in n
and find the polynomials explicitly when n is even and when n is odd.

TURN OVER...

9
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Show that for a particle on a circular orbit at radius R0 in the z = 0
plane of an axisymmetric potential Φ(R, z) the circular velocity Vc is given by

V 2
c = R0

∂Φ

∂R

∣∣∣
R=R0,z=0

.

Describe how the rotation curves of spiral galaxies are determined and why
their shapes indicate the need for dark matter.

(ii) For the Kuzmin disk potential

Φ(R, z) =
GM√

R2 + (a+ |z|)2
,

show that ∇2Φ = 0 for z 6= 0, where M and a are constants, G is the grav-
itational constant and R and |z| are the radial and perpendicular-to-plane
distances respectively.

Determine the mass surface density Σ(R) and hence show that the constant
M is the total mass of the disk.

Derive the circular velocity Vc(R) of a particle in the plane of the disk and
sketch the variation of this velocity as a function of radius. At what radius is
the circular velocity a maximum?

10
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Question 8Z - Topics in Astrophysics

(i) A distant Solar-like star has an Earth-like planet orbiting at a constant
radius of 1 AU with a period of 1 year. Estimate the fractional change in the
brightness of the star when the planet passes directly in front of the star and
the duration of the transit of the planet.

Derive the annual change in the radial velocity of the star due to the orbital
motion of the planet and estimate the relative orbital angular momenta of the
two bodies about their common centre-of-mass. Comment on your results.

(ii) The recently discovered Kuiper Belt dwarf planet Makemake is in a cir-
cular orbit at a distance of 52 AU from the Sun and has a diameter of 1450 km.
A Solar-like star at a distance of 10 pc from the Earth is predicted to be oc-
culted by Makemake when it is in opposition at 00:00 UT on 21st September
2013. This occultation will be optimally visible in Cambridge (latitude 52◦),
weather permitting. At this point in time the star will have a tangential ve-
locity of 10 km s−1 relative to the Earth. Estimate the physical size and shape
of the projected shadow of Makemake on the surface of the Earth and the
maximum duration of the occultation.

What is the precision in arcseconds required for the predicted relative po-
sitions of the star and Makemake such that an occultation could be observed
in Cambridge at the anticipated time.

If Makemake has an albedo of 4% at optical wavelengths estimate its ap-
parent visual magnitude mv.

END OF PAPER

11
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Question 1X - Relativity

(i) A mirror moves perpendicular to its plane with a speed v. With what
angle to the normal is a ray of light reflected if it is incident at an angle θ?
What is the change in the frequency of the light?

(ii) Show by explicit examination of components that the equations

∂Fαβ

∂xγ
+

∂Fβγ

∂xα
+

∂Fγα

∂xβ
= 0 and

∂F αβ

∂xβ
= 4πJα ,

where Fαβ is the electromagnetic tensor, Jα is the four-current and α, β and
γ = 0, 1, 2 or 3, contain Maxwell’s equations in Minkowski space.

[ Recall that

F αβ =




0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


 .]

2
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Question 2Y - Astrophysical Fluid Dynamics

(i) Explain what is meant by a barotropic flow. For a steady spherically
symmetric barotropic wind in the presence of an inwardly directed radial grav-
itational field of acceleration |gr|, show that the flow velocity u is given by

(
u2 − c2

s

) ∂ ln u

∂r
=

2c2
s

r
− |gr| ,

where cs is the local sound speed and r is the distance from the origin.

(ii) A barotropic outflow is everywhere driven by pressure in the atmo-
sphere of a planet composed purely of ionised hydrogen. Its density ρ and
temperature T are related by

T = T0

(
ρ

ρ0

)a

,

where ρ0 and T0 are fiducial values and pressure, density and temperature
obey the ideal gas law. For what values of a does the temperature of the flow
increase with radius from the planet? Explain why there is no steady outflow
solution if a < −1.

A planet of roughly Jupiter mass (2×1027 kg) orbits a star which gives rise
to an X-ray flux at the planet of magnitude FX = 1 W m−2. The stellar X-rays
heat the planet’s outer layers and drive a spherically symmetric wind from the
planet. The temperature of X-ray heated gas of number density n is given by

T = 1000

(
FX/n

5 × 10−15 W m

)0.9

K .

When any variation of FX with distance from the planet can be neglected
show that, in a steady state, the temperature of the wind must increase with
increasing distance from the planet.

The sonic surface of the X-ray heated flow is located at a radius Rs =
8 × 109 m from the centre of the planet. Using the relation given in part (i),
or otherwise, calculate the temperature and density of the wind at Rs. Hence
determine the mass-loss rate in the wind and the timescale on which the planet
loses 10% of its mass in this way.

When the radius of the sonic surface is independent of X-ray luminosity
also determine how the mass-loss rate changes when the X-ray luminosity of
the star is increased by a factor of 10.

TURN OVER...

3
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Question 3X - Physical Cosmology

(i) For a matter-dominated universe

δ̈ + 2
Ṙ

R
δ̇ − 4πGρ̄δ = 0 ,

where δ = (ρ− ρ̄)/ρ̄, ρ̄ is the mean density and R is the scale factor. Find the
growing mode solutions δ(t), δ(R) and δ(z) for an Einstein-de Sitter universe.

What sets the upper and lower length scales for growth to actually occur?

(ii) Show that the sound speed cs in the early Universe is given by

c2
s =

dp

dρ
=

1

3

(
4ρr

3ρm + 4ρr

)
c2 ,

where ρr is the radiation density, ρm is the matter density and c is the velocity
of light.

How does cs depend on the scale factor R before the time of equivalence
teq, between teq and the time of recombination trec and after trec?

The sound speed just before recombination is 1011/3 greater than it is just
after recombination. Give a descriptive explanation for this large difference.

The Jeans length is given by

λJ = cs

√
π

Gρ̄
,

where ρ̄ is the mean density and the Jeans mass MJ just before recombination
is 107 M⊙. Sketch MJ(R) from a time before teq to a time after trec. What
does this imply for the growth of structure in a universe where the matter is
purely baryonic?

For non-baryonic dark matter during the period teq/4 < t < 4teq perturba-
tions grow according to

δ ∝ 3η + 2 ,

where η = ρDM/ρr and ρDM is the dark matter density. Find the growing modes
δ(t), δ(R) and δ(z) for an Einstein-de Sitter universe before and after teq for
the non-baryonic dark matter. What value of δ is needed at teq to explain the
structures we see in the present day Universe?

[You may assume that ∆T/T ≈ 10−5 for the anisotropies in the cosmic mi-
crowave background.]

4
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Question 4Z - Structure and Evolution of Stars

(i) Assume that the density ρ(r) of a star varies linearly from the centre
of the star r = 0 to the surface r = R such that

ρ(r) = ρc

(
1 −

r

R

)
,

where ρc is the central density. Derive expressions for the total mass of the
star M(R) and for ρc/ρ̄, where ρ̄ is the mean density of the star.

(ii) For the star from part (i) derive an expression for the pressure P (r) as
a function of radius. Use this result to deduce the dependence of the central
pressure Pc on stellar radius and mass.

Assuming an ideal gas law, derive an expression for the temperature T (r)
as a function of radius r and show that T (R) = 0.

The star is composed only of completely ionized hydrogen. Derive an ex-
pression for the central temperature Tc as a function of the stellar radius R.

Compare the central temperature computed in this way to that of the Sun,
1.6 × 107 K. What conclusions do you draw from this comparison?

TURN OVER...

5
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Question 5Y - Statistical Physics

(i) Give the first law of thermodynamics for a closed system containing a
fixed number of particles. Explain carefully the meaning of each term.

What is equipartition of energy? Under which conditions is it valid? Use it
to show that the heat capacity at constant volume CV for a monatomic ideal
gas of N particles is given by

CV =
3

2
NkB ,

where kB is Boltzmann’s constant.

(ii) Use the first law of thermodynamics and the fact that for an ideal
gas (∂E/∂V )T = 0 to show that the entropy S of an ideal gas containing N
particles can be written as

S(T, V ) =

∫
CV (T )

T
dT + NkB ln

V

N
+ const ,

where T and V are the temperature and volume of the gas, kB is Boltzmann’s
constant and CV is the heat capacity at constant volume.

Now consider a gas in which the number of particles N can vary. The first
law of thermodynamics becomes

dE = TdS − pdV + µdN ,

where µ is the chemical potential. The Gibbs free energy G is the thermody-
namic potential for which temperature T , pressure p and particle number N
are regarded as independent variables. How is it obtained from the energy E?

Calculate the chemical potential µ for an ideal gas with heat capacity per
particle cV (T ) = CV /N .

Thence show that for an ideal monatomic gas

µ(T, p) = kBT

(
µ(T0, p0)

kBT
−

5

2
ln

T

T0

+ ln
p

p0

)
,

where T0 and p0 are a fiducial temperature and pressure.

6
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Question 6Y - Principles of Quantum Mechanics

(i) A particle has normalized angular momentum states |j m〉 such that

Ĵ2|j m〉 = j(j + 1)~2|j m〉 and Ĵ3|j m〉 = m~|j m〉, where Ĵ̂ĴJ is the angular
momentum operator. Write down the general form for the commutator [Ĵi, Ĵj ].

Ladder operators Ĵ+ and Ĵ− are defined by Ĵ± = Ĵ1 ± iĴ2. Find the
commutators [Ĵ2, Ĵi], [Ĵ3, Ĵ±] and [Ĵ2, Ĵ±] explicitly in terms of Ĵ2, Ĵ3 and Ĵ±.

Show that Ĵ+Ĵ− = Ĵ2 − Ĵ2
3 + ~Ĵ3.

(ii) Show that Ĵ+|j m〉 and Ĵ−|j m〉 are eigenstates of Ĵ2 and Ĵ3 and find
their eigenvalues.

Find real coefficients a± such that the states a+Ĵ+|j m〉 an a−Ĵ−|j m〉 are
normalized. Thence evaluate

〈j j−1|Ĵ j−1
+ Ĵ j

−
|j j〉

explicitly in terms of j.

Consider the combination of a spinless nucleus with an electron of spin 1

2
~

and orbital angular momentum ~. Calculate the probability that the electron
has a spin of +1

2
~ in the z direction when the combined system has an angular

momentum of +1

2
~ in the z direction and a total angular momentum of (a)

+3

2
~ and (b) +1

2
~.

TURN OVER...
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Give a brief account of the dynamical structure and evolution of globular
clusters in the Halo of the Milky Way. Include an explanation of the physical
processes and timescales that might drive cluster development. What makes
globular clusters useful as dynamical probes of the Halo?

(ii) A globular cluster on an orbit with eccentricity e falls to its certain
death in a host galaxy with a flat circular velocity curve with Vc = 200 km s−1.
The stars tidally stripped from the cluster arrange themselves into two tails,
leading and trailing. Assume that all tearing happens at pericentre where
the stars leave the cluster through two Lagrange points separated by 2rJ.
At pericentre the debris has the systemic velocity of the cluster. Find the
difference in apocentre distances for stars in the leading and trailing tails.

A globular cluster in this host galaxy is observed to have a spread in apoc-
entre distances of its tidal tails of 3 kpc. The apocentric distance of the main
body of the cluster is at 100 kpc and the orbital eccentricity e = 0.8 . Estimate
the total mass of the cluster.

8
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Question 8Z - Topics in Astrophysics

(i) An Active Galactic Nucleus (AGN) is powered by accretion of matter on
to a supermassive black hole of mass M . Energy is generated by gravitational
infall of material that is heated to a high temperature. Derive the Edding-
ton limit LE due to outward radiation pressure on the infalling material and
show that for radially accreting ionized hydrogen the AGN has a maximum
luminosity given by

LE =
4πGMmpc

σT

,

where G is the gravitational constant, c is the velocity of light, mp is the proton
mass and σT is the Thomson scattering cross-section of an electron.

Assuming a 100% conversion efficiency, what mass of AGN radiating at the
Eddington limit would be required to power a typical household?

(ii) There is dynamical evidence that the nucleus of the Milky Way har-
bours a supermassive black hole with mass 4 × 106 M⊙. If this nuclear region
radiates with a luminosity at 10% of the Eddington limit what is its luminosity
in units of L⊙? What is this as an absolute bolometric magnitude Mbol, if for
the Sun Mbol = 4.75? What mass accretion rate would be required to sustain
this luminosity?

Starting from a black hole seed mass of 100 M⊙, how long would it take the
black hole in the Milky Way accreting at this rate to reach its current mass?
What are the implications of the value obtained?

Assume that this central radiation is completely absorbed by a giant opaque
spherical dust cloud of radius 10 pc surrounding the nucleus. The cloud is in
thermal equilibrium and behaves as if it were a large black body. What is
the temperature of the cloud and at what wavelength is the cloud emission a
maximum?

END OF PAPER

9
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Question 1X - Relativity

(i) A particle falls radially into a non-rotating black hole from rest at
infinity. What is its inward coordinate velocity dr/dt at a coordinate radius
r? What is the locally measured velocity relative to a stationary observer at
the same radius?

(ii) Derive the equations of motion relating t, r and τ , where τ is the proper
time, for the same particle as in (i). Consider two cases: a particle released
from rest at infinity; and a particle released from rest at r = R.

2



C
op

yr
ig

ht
 ©

20
13

 U
ni

ve
rs

ity
 o

f C
am

br
id

ge
. N

ot
 to

 b
e 

qu
ot

ed
 o

r 
re

pr
od

uc
ed

 w
ith

ou
t p

er
m

is
si

on
.

Question 2Y - Astrophysical Fluid Dynamics

(i) State and explain the conditions on the speeds u1 and u2 that are
satisfied at an isothermal shock front and hence prove that

u2

u1

=

(
cs
u1

)2

,

where subscripts 1 and 2 denote conditions upstream and downstream of the
shock and cs is the sound speed.

For an ideal gas state the sign of the specific entropy change between the
pre-shock state and the post-shock state calculated above and describe the
physical processes that occur in the thin region separating these two regimes
and how these affect the specific entropy of the flow.

(ii) Derive the dispersion relation for sound waves in a steady and uniform
self-gravitating medium and hence show that there is a critical (Jeans) length
scale

λJ = cs

√
π

Gρ
,

where cs is the sound speed, G is the gravitational constant and ρ the gas
density, such that scales larger than this are subject to gravitational collapse.
Explain why a gravitationally unstable cloud, which remains at constant tem-
perature, should fragment into successively smaller pieces as the cloud collapse
proceeds.

The temperature T and density ρ of a gas cloud that is collapsing under
gravity is governed by the equation

4κσT 4 =
R∗T

µ
(16πGρ)

1

2 ,

where κ is the opacity of the gas, σ is the Stefan-Boltzmann constant, R∗

is the gas constant and µ is the mean molecular weight. The left hand side
represents the rate of cooling per unit mass owing to optically thin cooling.
Suggest, without detailed calculation, what process is represented by the right
hand side of this equation.

The optical depth across fragments of length λJ,

τJ = ρκλJ ,

increases as the cloud collapses until it eventually attains a value of unity.

TURN OVER...

3
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At this point fragments cannot cool efficiently and further sub-fragmentation
is impossible. Use this information to calculate the density and temperature
corresponding to fragments with τJ = 1 when the opacity is given by

κ = 2 × 10−5

(
T

K

)2

m2 kg−1

and the gas is neutral hydrogen. Hence calculate the minimum mass for grav-
itational fragmentation and comment on the implications of your answer for
the existence of free-floating planets forming from interstellar gas clouds.

4
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Question 3X - Physical Cosmology

(i) The cross section for neutrino interactions is given by

σ = 3.5×10−67

(
T

K

)2

m2

and the number density of a single neutrino type is given by

n(T ) = 7×106

(
T

K

)3

m−3 ,

where T is the temperature. Estimate the typical time between interactions.
As the Universe cools, at what temperature do the neutrinos decouple?

When the electrons and the positrons annihilate the temperature of the
photons increases by a factor of (11/4)1/3. Assuming that neutrinos are mass-
less, what is the temperature of the relic neutrinos present in the Universe
today?

(ii) At a time just before recombination estimate the number density of the
electrons, the mean free path and the average time between photon-electron
collisions. You may assume that the intergalactic gas is fully ionized at the
present epoch with an electron density of 0.2 m−3 and that z = 1000 just
before recombination. What does this imply about the opacity of the Universe
at early times?

Assume that the gas remains neutral after recombination until an early
generation of stars reionizes it at redshift z = z∗ and that from then on the
electron fraction χe = ne/nH remains constant. Show that in an Einstein-de
Sitter universe the optical depth for scattering by the free electrons obeys

τ = Cχe(1 + z∗)
3/2 ,

where C is a dimensionless constant. Estimate the redshift z∗ at which the gas
was ionised when C = 0.001, χe = 0.1 and τ = 0.01.

TURN OVER...
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Question 4Z - Structure and Evolution of Stars

(i) X-ray observations have shown that the corona of the Sun reaches a
temperature of nearly 106 K. Why doesn’t the Sun appear as a blackbody with
Teff ≈ 106 K?

When the temperature gradient of a stellar atmosphere is such that the
temperature increases outwards, what type of spectral line would you expect
to see in the stellar spectrum at wavelengths where the opacity is greatest?

Consider a star surrounded by a large hollow spherical shell of hot gas.
Under what circumstances would you see this shell as a ring around the star?
If you observed the ring with a spectrograph what type of spectrum would you
see?

(ii) A white dwarf star can be modelled as an isothermal degenerate core
with temperature Tc, mass Mc and molecular weight µc. The core cools and
loses energy at a rate

L = −
3

2

R∗Mc

µc

dTc

dt
,

where R∗ is the gas constant and is overlaid by a thin non-degenerate envelope
with opacity following Kramers’ law

κ =
Aρ

T 3.5
,

where A is a constant and ρ(r) and T (r) are respectively the density and
temperature at radius r. Using equations of stellar structure show that in the
envelope pressure and density are related by

P (r) ∝ ρ(r)
n+1

n ,

with n = 3.25.

The transition density from core to envelope is given by ρt = CT
3/2
c , where

C is a constant. Show that the luminosity L depends on the core temperature
as L ∝ T 3.5

c .

Show also that the luminosity decreases with time as L ∝ t−7/5. Explain
how you would verify empirically that this result holds for real white dwarfs.

Suppose that in the Milky Way white dwarfs are formed at a constant rate
and that we are able to see all white dwarfs to a given distance from the Earth.
How would you expect the number of white dwarfs per luminosity bin to vary
with luminosity? Is this what is observed? If not give a plausible interpretation
of the discrepancy.

6
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Question 5Y - Statistical Physics

(i) Describe the microcanonical ensemble.

For quantum mechanical systems the energy levels are discrete. How can
the number of states be interpreted in this case?

(ii) Consider N independent, linear harmonic oscillators of equal frequency
ω. Their total energy is given by

E(n1, n2, . . . , nN) =

N∑

i=1

~ω

(
ni +

1

2

)
= M~ω +

N

2
~ω ,

where

M =
N∑

i=1

ni ,

and ni = 0, 1, 2, . . . is the excitation number of oscillator i. Show that for fixed
N and M the number gN(M) of ways to distribute the M excitations over N
oscillators is given by

gN(M) =
(M +N − 1)!

M ! (N − 1)!
.

For a given total energy between E and E + ∆E calculate the probability
distribution P (E1) for the first oscillator as a function of its energy E1 =
n1~ω + 1

2
~ω.

Show that for ∆E = ~ω ≪ E

P (E1) ≈
gN−1(M − n1)

gN(M)
.

Approximate this in the limit when N ≫ 1 and M ≫ n1 and argue that the
result is unchanged when ∆E > ~ω as long as ∆E ≪ E.

TURN OVER...

7
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Question 6Y - Principles of Quantum Mechanics

(i) A Hamiltonian Ĥ has time independent, non-degenerate, normalised
eigenstates |ψn〉 such that Ĥ|ψn〉 = En|ψn〉, with n = 1, 2, 3, . . . . The system
is perturbed so that the Hamiltonian becomes Ĥ ′ = Ĥ + λĤ(1), where λ≪ 1
and is real and positive. Show that, to first order in λ, the energy of the nth
excited state is perturbed to En + λE

(1)
n , where E

(1)
n = 〈ψn|Ĥ

(1)|ψn〉 and find
the first order perturbation to the nth state.

(ii) The infinite square-well potential has V (x) = 0 for |x| < a and is
infinite for |x| > a. It is perturbed by the potential δV = ǫx/a for |x| < a.
Find the perturbation in the nth energy level En to first order in ǫ. Show that
the ground-state wavefunction is

ψ1(x) =
1
√
a

[
cos

πx

2a
+

32ǫ

π2E1

∞∑

m=1

(−1)m m

(4m2 − 1)3
sin

mπx

a
+ O(ǫ2)

]
.

Comment on the conservation of parity in the unperturbed and perturbed
systems.

8



C
op

yr
ig

ht
 ©

20
13

 U
ni

ve
rs

ity
 o

f C
am

br
id

ge
. N

ot
 to

 b
e 

qu
ot

ed
 o

r 
re

pr
od

uc
ed

 w
ith

ou
t p

er
m

is
si

on
.

Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Using Kepler’s third law, or otherwise, deduce the free-fall time for a
sphere of radius R with constant density ρ to collapse to a point under self-
gravity.

Estimate this timescale for a constant density spherical cloud of molecular
gas with mass 1000 M⊙ and radius 100 pc.

(ii) Massive elliptical galaxies have at least half of their mass Mini already
assembled at high redshift. They then grow further through a series of mergers
that bring in a total of Macc in accreted mass. The fractional mass increase
due to the accreted material is η = Macc/Mini, while the total kinetic energy
of the material is Kacc = 0.5Macc <v

2
acc > and ǫ = <v2

acc > / <v2
ini>. Using

the virial theorem deduce the ratio of the final to initial mean square speeds,
gravitational radii and densities.

What are the differences between accretion of a single equal mass system
compared with the equivalent mass randomly accreted from much smaller sub-
units i = 1, 2, 3, . . . where Mi ≪Mini.

TURN OVER...

9
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Question 8Z - Topics in Astrophysics

(i) Sketch the observed optical spectrum (300 – 1000 nm) of a redshift z = 4
quasar noting the main features that would typically be present.

The spectrum of a distant quasar shows two broad emission lines with
observed wavelengths of 395.2 nm and 910.0 nm. The strongest lines are most
likely to be either Lyman-α with a rest wavelength of 121.6 nm, CIV with
a rest wavelength of 154.9 nm, or MgII with a rest wavelength of 280.0 nm.
Determine the redshift of the quasar and identify the two lines that have been
detected.

(ii) The supermassive black hole powering the quasar in (i) has a mass
of 109 M⊙. The broad emission lines seen in the spectrum have observed line
widths of 10 nm and 23 nm respectively. Assuming that these lines originate in
a large ionised gas cloud close to the quasar nucleus estimate the approximate
distance of the cloud from the black hole. How does this compare with the
Schwarzschild radius of the black hole?

An intervening absorption system along the line-of-sight to this quasar
produces two narrow absorption lines at wavelengths of 449.2 nm and 812.0 nm,
with intrinsic line widths of 0.016 nm and 0.028 nm respectively, plus one very
broad (saturated) absorption line at a wavelength of 352.6 nm. If the lines are
due to neutral gas in thermal equilibrium estimate the temperature and bulk
random motion of the gas.

What type of object is this intervening system likely to be and at what
redshift?

[The atomic weights of hydrogen, carbon and magnesium are 1.674×10−27 kg,
1.994 × 10−26 kg and 4.036 × 10−26 kg respectively.]

END OF PAPER

10
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Question 1X - Relativity

(i) In a space of fewer than four dimensions simple expressions can be given
for the Riemann tensor. Derive the Riemann tensor in a one-dimensional space
and express the Riemann tensor for a two-dimensional space in terms of the
metric and the Ricci scalar.

(ii) An infinitesimal circuit in the shape of a parallelogram is specified by
four-vector differential displacements u and v representing the sides of the
parallelogram. Let a four-vector A be parallel transported around this circuit.
Show that the change in A due to the transport is

δAα = −Rα
βγδA

βuγvδ ,

where Rα
βγδ is the Riemann tensor.

Suppose K is a curvature at a point in a two-dimensional space defined as

K =
RαγβδA

αAβBγBδ

(gκλgµν − gκνgλµ)AκAλBµBν
,

where gαβ is the metric tensor and A and B are two four-vectors tangent at
a point to the two-surface. If A is parallel transported around a small circuit
lying in the two-surface, not necessarily a rectangle, show that the change in
the angle between A and B is of magnitude

∆θ = |K∆Σ| ,

where ∆Σ is the area enclosed by the circuit.

2
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Question 2Y - Astrophysical Fluid Dynamics

(i) In order to illustrate its viscous evolution sketch a series of snapshots
of the surface density distribution of an accretion disc for which the initial
configuration is a narrow ring of material at radius R = R0.

State the sign of the evolution of the radius enclosing half of the disc mass
and the radius enclosing half of the disc angular momentum. Comment briefly
on the principles that dictate the sign of these evolutionary changes.

Such a disc accretes on to a star through a zero torque inner boundary.
Explain why such a boundary is appropriate and explain the sign of the rate
of change of the angular momentum of the star and of the disc.

State what boundary condition applies at its outer edge when the disc is
truncated by the tidal influence of a companion. How is the global angular
momentum conservation of a binary star plus disc system ensured in this case?

(ii) An accretion disc is convectively unstable and contains convection cells
which are typically of size H , the vertical scale height of the disc. Explain how
convection transports energy from the disc mid-plane to its surface.

If the disc consists of a diatomic gas, state and explain the relationship
between pressure and density as a function of height at a fixed cylindrical
radius in the disc.

The kinematic viscosity ν can be written in the form ν = ṽλ where ṽ
and λ are the velocity and length scales associated with angular momentum
transport in the disc. Use dimensional analysis to determine the coefficients a
and b in the equation

tν = kRaνb,

where tν is the viscous timescale at radius R in the disc and k is a dimensionless
constant of order unity.

Accretion discs around young solar mass stars are typically about 100 AU
in radius and are observed to evolve on a timescale of a few million years. Use
this information to estimate ν at the outer edge of the disc.

The density and temperature of the disc at this radius are 3×10−11 kg m−3

and 10 K. Estimate λ when the velocity ṽ associated with angular momentum
transport is of order the local sound speed. Compare this with the molecular
mean free path and the vertical disc scale height H . What does this suggest
about viable viscosity mechanisms in accretion discs?

TURN OVER...
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Question 3X - Physical Cosmology

(i) The cosmic microwave background (CMB) is observed today as a perfect
black body with

uνdν =
8πh

c3

ν3dν

ehν/kBT − 1
,

where uνdν is the energy density of the radiation for frequencies from ν to
ν + dν, T is the temperature and kB is Boltzmann’s constant. Assuming that
the temperature of the photons obeys Tγ ∝ 1 + z, show that an observer in
the past would also see the CMB as a perfect black body.

What does the assumption Tγ ∝ 1 + z imply about the z dependence of
the total number of CMB photons? At what point in the past does this
assumption break down and what does this imply about the baryon to photon
number ratio?

(ii) Sketch the Ωm,0 − ΩΛ,0 plane for −2 ≤ ΩΛ,0 ≤ 3 and 0 ≤ Ωm,0 ≤ 3,
where Ωm,0 is the cosmic density parameter of matter today and ΩΛ,0 is the
cosmic density parameter of the cosmological constant today. Draw boundaries
that divide the plane into open and closed universes, into accelerating and
decelerating universes, into universes that will expand forever and those which
will eventually collapse. Clearly label the different regions. Indicate on this
diagram which universes have an age of 14 Gyr and which are younger.

Using the appropriate Friedmann equation, or otherwise, determine whether
a universe with Ωm,0 = 0.5 and ΩΛ,0 = 3.5 is open or closed. Show that these
values can correspond to a universe with no big bang. What is the maximum
observed redshift in such a universe?

[You may require the factorisation x3−6x2y +7y3 = (x+y)(x2−7xy +7y2) . ]
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Question 4Z - Structure and Evolution of Stars

(i) Describe in a few sentences the main properties of globular clusters and
explain their importance as a window on stellar evolution.

Sketch the Hertzsprung-Russell diagram of a typical globular cluster and
discuss its nomenclature in terms of different stages of stellar evolution.

Why are planetary nebulae rarely seen in globular clusters?

(ii) A gas cloud collapses to form a star cluster. The number of stars
formed with masses in the range M to M + dM is given by

dN = φ(M)dM ,

where the function φ(M) is observed to have the form

φ(M) ∝ M−2.35 .

The luminosity L of a star on the main sequence follows the relation L ∝ M3.5.
Assume that the total luminosity of the cluster is dominated by stars on the
main sequence. Calculate the change in the luminosity of the cluster as the
main-sequence turn-off mass decreases from 2 M⊙ to 1 M⊙.

The initial mass function of the cluster ξ(M) is defined in terms of the
mass in stars in the range M to M + dM such that

MdN = ξ(M)dM .

How does the initial mass function depend on mass?

As stars leave the main sequence, those with mass M ≥ MSN return
90% of their mass to the interstellar medium in core-collapse supernova ex-
plosions. Stars with masses M < MSN produce a white dwarf with mass
MWD = 0.6 M⊙ returning the remainder of their main-sequence mass to the
interstellar medium. Derive an expression for the fraction of the total mass
of the cluster returned to the interstellar medium when the main-sequence
turn-off occurs at a mass of 1 M⊙. Using suitable values for the maximum
and minimum stellar mass in the cluster at its birth and for MSN, provide a
numerical estimate of this fraction.

TURN OVER...
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Question 5Y - Statistical Physics

(i) What is meant by the canonical ensemble in statistical physics? Show
that in such an ensemble the probability of finding a system in a particular
microstate i of energy Ei is given by the Boltzmann distribution

Pi ∝ exp(−Ei/kBT ) ,

where kB is Boltzmann’s constant and T is the temperature.

Define the partition function Z for the ensemble.

(ii) A classical particle of mass m moves non-relativistically in a two-
dimensional space enclosed within a circle of radius R and is attached through
a spring with constant κ to the centre of the circle so that it moves in a
potential

V (r) =

{
1
2
κr2 for r < R ,

∞ for r ≥ R ,

where r2 = x2 + y2. The particle is coupled to a heat reservoir of temperature
T . Calculate the average energy of the particle.

What is this average energy in the limits of strong coupling, 1
2
κR2 ≫ kBT ,

and weak coupling, 1
2
κR2 ≪ kBT , where kB is Boltzmann’s constant?

Compare these two results with what is expected from equipartition of
energy.

6
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Question 6Y - Principles of Quantum Mechanics

(i) The Hamiltonian of a harmonic oscillator is

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2,

where p̂ and x̂ are momentum and position operators. Describe how to con-
struct creation and annihilation operators â and â† so that

Ĥ =
1

2
~ω(ââ† + â†â)

and [â, â†] = 1.

(ii) Explain how the space of eigenstates |n〉, n = 0, 1, 2, . . . of Ĥ of part (i)
is formed and deduce the energies for these states.

Show that

â|n〉 =
√

n|n − 1〉, â†|n〉 =
√

n + 1|n + 1〉

and give the form of the number operator N̂ such that N̂ |n〉 = n|n〉.

The operator K̂r is defined to be

K̂r =
â†râr

r!
r = 0, 1, 2, . . . .

Show that K̂r commutes with N̂ and that

K̂r|n〉 =

{
n!

(n−r)!r!
|n〉 if r ≤ n

0 otherwise.

By considering the action of K̂r on the state |n〉, show that

∞∑

r=0

(−1)rK̂r = |0〉〈0| .

TURN OVER...
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) A planet is formed as a perfect cube of constant density. Derive expres-
sions for the gravitational field inside the planet and on its surface.

If an astronaut went for a long walk over the surface what would they
experience as they moved away from the centre of a face and approached the
edges and vertices?

(ii) Assume that the mass budget of the Galactic Halo is dominated by
dark matter spherically distributed with density ρ(r) given by the Navarro-
Frenk-White (NFW) law

ρ(r) =
ρ0

(r/rs) (1 + r/rs)2
,

where ρ0 is a constant density scale factor, rs is a characteristic scale radius
and r is the radial distance from the centre. Derive the Galactic Halo mass
within a sphere of radius r and hence deduce the circular velocity at distance
r.

An outer Galactic Halo stellar tracer population at 50 kpc < r < 150 kpc
is observed to follow power-law distributions in density ν(r) and line-of-sight
velocity dispersion σ(r) such that

ν(r) = ν0 (r/r0)
−α and σ2(r) = σ2

0 (r/r0)
−γ ,

where ν0 and σ0 are respectively the density and line-of-sight velocity dispersion
at radius r = r0 = 100 kpc and α and γ are the constant power-law indices.
Assuming an isotropic velocity dispersion for the tracer population use the
Jeans’ equation in spherical polars, or otherwise, to estimate the total amount
of matter in the Galaxy in this radial range.

When α = 2.5 and γ = 0.5 estimate the scale factor rs of the NFW profile
that reproduces the observed mass dependence on r at r = r0.

[You may assume that the line-of-sight velocity measurement is equivalent to
a radial velocity measured with respect to the Galactic centre.]

8



C
op

yr
ig

ht
 ©

20
13

 U
ni

ve
rs

ity
 o

f C
am

br
id

ge
. N

ot
 to

 b
e 

qu
ot

ed
 o

r 
re

pr
od

uc
ed

 w
ith

ou
t p

er
m

is
si

on
.

Question 8Z - Topics in Astrophysics

(i) Galaxies orbiting in the strong gravitational field of a galaxy cluster
are susceptible to tidal stripping as they approach the central cluster mass
concentration. A galaxy of mass mg and outer radius rg is infalling slowly to
a cluster. If the total mass of the cluster within a radius R is MR, show that
the infalling galaxy will be tidally stripped when

R ≈ rg

(
2MR

mg

)1/3

.

A spherical galaxy cluster has a mass 1014 M⊙ within a radius 1 Mpc and a
mass of 1013 M⊙ within 200 kpc. A proto-galaxy of total mass 109 M⊙, outer
radius 20 kpc and density proportional to r−2 falls toward the central region
of the cluster. Estimate what fraction of the proto-galaxy will survive at these
radii.

(ii) A gas-rich disk galaxy is moving through a hot ionized intracluster
medium with a velocity component V perpendicular to the disk. The gravi-
tational field of the disk is dominated by stars with mean surface density Σ∗.
Show that the ram pressure exerted by the intracluster medium can strip the
gas from the disk if

ρc >
2πGΣ∗µ

V 2
,

where ρc is the density of the intracluster medium, G is the gravitational
constant and µ is the mean gas surface density in the disk.

If the stellar mass of the disk is 2 × 1011M⊙ and the gas mass in the disk
is 109 M⊙, both distributed over a radius of 20 kpc, compute ρc if the galaxy
is moving through the cluster with V = 1000 km s−1.

What is the total mass of ionised cluster gas if gas of this density is uni-
formly spread out over a sphere of radius 1 Mpc?

END OF PAPER
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