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Question 1X - Relativity

(i) Consider two coordinate systems S and S ′ of a 4-dimensional Minkowski
spacetime with xµ = (t, x, y, z) and x′µ = (u, v, y, z). Derive the matrix Λµ

ν

that relates the two coordinate systems as x′µ = Λµ
ν x

ν for the coordinate
transformation with u = t− x, v = t+ x. [2]

A 4-vector has values Uµ = (−1/2, 1/2, 0, 0) in S. Calculate its values in S ′

under this coordinate transformation. [2]

A tensor Fµν is antisymmetric in coordinate system x. Derive the symmetry
property of Fµν in coordinate system x′. [2]

Consider the outer product T µνρ = Uµ ⊗ V ν ⊗W ρ of three 4-vectors Uµ,
V ν and W ρ. Show that the contraction T µηη transforms like a 4-vector. [4]

(ii) The Riemann tensor in terms of the metric connection Γ is given by

Rλµν
ρ = −

∂Γρµν
∂xλ

+
∂Γρλν
∂xµ

+ Γηλν Γρµη − Γηµν Γρλη.

Use the Riemann tensor in local Cartesian coordinates to verify thatRλµνρ+
Rλνρµ +Rλρµν = 0. [10]

Starting from the twice-contracted Bianchi identity

gνσgµλ [∇λRρσµν +∇ρRσλµν +∇σRλρµν ] = 0,

show that ∇µRρµ = ∇ρR/2, where Rρµ and R are the Ricci tensor and Ricci
scalar. [9]

Show that ∇µGµν = 0, where Gµν is the Einstein tensor. [1]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Starting with the equations of fluid dynamics given in the formula
sheet, derive the Rankine-Hugoniot relations connecting the pre- and post-
shock densities ρ, pressures p, velocities u and temperatures T for the case of
a perpendicular shock front in an isothermal fluid. [7]

How are these relations modified if the incoming flow is not perpendicular
to the shock front? [3]

(ii) Use the Rankine-Hugoniot relations for an adiabatic gas to show that
the Mach number of the pre-shock flow M1 is related to that of the post-shock
flow M2 by [

2 + (γ − 1)(M2
1 +M2

2 )− 2γM2
1M

2
2

]
(M2

1 −M2
2 ) = 0,

where γ is the usual ratio of specific heat capacities. [10]

Show that, if the pre-shock flow is supersonic, then the post-shock flow
must be subsonic. [6]

As the shock becomes very strong, show that M2 tends to a constant.
Determine this constant. [2]

Evaluate M2 for a strong shock in a gas which has γ−1� 1, and interpret
the result physically. [2]

TURN OVER...
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Question 3X - Introduction to Cosmology

(i) Consider a Friedmann-Robertson-Walker universe with scale-factorR(t),
curvature constant k, containing uniform matter with energy density ρc2 and
pressure p. Show that energy conservation

d (ρR3)

dR
= −3

p

c2
R2,

can be written in the form

ρ̇ c2 = −3 (ρ c2 + p)H,

where overdots denote differentiation with respect to time andH(t) = Ṙ(t)/R(t).
[2]

Use the Friedmann equations to show that

Ḣ(t) = −4π G (ρ+ p/c2) +
k c2

R2
,

independent of the cosmological constant Λ. [4]

If Λ = 0, p = 0 and k > 0, show that the scale factor reaches a maximum
value Rmax at time tmax. Show that at tmax,

Ḣ(t = tmax) = − k c2

2R2
max

.
[3]

Give a physical interpretation of this result. [1]

(ii) A Friedmann-Robertson-Walker universe contains non-relativistic mat-
ter with density ρm which decays into a relativistic component with density
ρr. The time evolution of the non-relativistic component can be written as

ρm(t) =
A

R3
e−Γ t,

where A and Γ are constants and R is the scale-factor. Show that the densities
ρm and ρr satisfy

ρ̇m = −3H ρm − Γ ρm,

ρ̇r = −4H ρr + Γ ρm,

where dots denote differentiation with respect to time and H(t) = Ṙ(t)/R(t).
[5]
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Show that the density ratio θ = ρr/ρm satisfies

θ̇(t) = Γ + (Γ−H(t)) θ(t). (∗)

[6]

In a universe dominated by a cosmological constant at late times, H(t)
tends to a constant value HΛ. Show that in this limit, the solution to (∗)
satisfying the boundary condition θ → 0 as t→ 0 is

θ(t) =
Γ

Γ−HΛ

[
e(Γ−HΛ) t − 1

]
.

[6]

Discuss the evolution of θ(t) for t → ∞ in the two cases Γ > HΛ and
Γ < HΛ. [3]

TURN OVER...
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Question 4Z - Structure and Evolution of Stars

(i) Name three scientists credited with key advancements in our under-
standing of the structure and evolution of stars. For each, explain in a few
words the nature of their contribution to the subject. [3]

Explain in a few sentences the main difference between H ii regions and
planetary nebulae. [2]

Observationally, what differences might you expect in (a) chemical compo-
sition, (b) degree of ionisation, and (c) kinematics between H ii regions and
planetary nebulae? [5]

(ii) Assume that a star evolves at constant mass and that angular momen-
tum is not lost via a wind. How will the rotation speed of the star depend on
its radius? [3]

The Sun will ultimately evolve into a white dwarf, with radius RWD =
107 m. Given that the Sun has a rotation period of 28 days, obtain an estimate
of the rotation period of the white dwarf it will eventually become. [5]

Comment on whether this estimate is likely to be an upper or lower limit
to the actual value. [2]

Neutron stars are believed to be formed in Type II supernovae as the core
of a massive star collapses. If the core had an initial radius Rc = 107 m and
a rotation period of 28 days, estimate the rotation period of the neutron star,
assuming Rns = 10 km. [4]

Compute the minimum rotation period possible for a neutron star. Com-
pare this to the rotation period of the Rns = 10 km neutron star. [6]
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Question 5Z - Statistical Physics

(i) What systems are described by a grand canonical ensemble? If there are
Nn particles in microstate n each with energy En, write down an expression for
the grand canonical partition function, Z, in terms of temperature T , chemical
potential µ and Boltzmann constant kB. [4]

Define the grand canonical potential, Φ, in terms of average energy E,
temperature T , entropy S, chemical potential µ and the average number of
particles 〈N〉. Write down the relation between Φ and Z. [2]

Using scaling arguments, express Φ(T, V, µ) in terms of the pressure, p, and
volume, V . [4]

(ii) Consider the grand canonical ensemble as described in Part (i) for a
classical ideal gas of non-relativistic particles of massm in a fixed 3-dimensional
volume V . Compute Z and Φ. [7]

Calculate 〈N〉, and ∆N/〈N〉, where (∆N)2 = 〈N2〉 − 〈N〉2. Comment on
the result for ∆N/〈N〉. [4]

Derive the equation of state for the gas. [1]

Using your results and the assumptions of the grand canonical ensemble,
derive the equation of state for a classical ideal gas of relativistic particles
with mass m and momenta p with energies equal to

√
p2c2 +m2c4. Compute

∆N/〈N〉. [8]

[ You may assume that

∫ ∞
−∞

e−a x
2

dx =
√
π/a for a > 0. ]

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) Let A and A† respectively be the lowering and raising operator for a
one-dimensional quantum harmonic oscillator, with [A,A†] = 1. Also, let |n〉
be the nth excited state of the oscillator, obeying N |n〉 = n|n〉 where N = A†A
is the number operator. Show that A|n〉 ∝ |n − 1〉 and find the constant of
proportionality. [5]

For any z ∈ C, define the coherent state |z〉 as

|z〉 = e−|z|
2/2

∞∑
n=0

zn√
n!
|n〉 .

Show that 〈z|z〉 = 1 and that A|z〉 = z|z〉. [5]

(ii) For the one-dimensional quantum harmonic oscillator described in Part
(i), calculate the expectation value 〈N〉 and uncertainty ∆N of the number
operator in the coherent state |z〉. [8]

Show that the relative uncertainty ∆N/〈N〉 → 0 as 〈N〉 → ∞. [2]

A harmonic oscillator is prepared to be in state |z〉 at time t = 0. Using
your knowledge of the Hamiltonian of the one-dimensional harmonic oscillator,
show that the state evolved to time t > 0 is still an eigenstate of A and find
its eigenvalue. [3]

Calculate the probability that the oscillator is found to be in the original
state |z〉 at time t. [5]

Show that this probability is 1 whenever t = kT , where k ∈ N and T is the
classical period of the oscillator. [2]
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) A cluster orbits in a spherically symmetric galaxy whose potential at a
radius r is given by

Φ(r) = − GM

b+
√
b2 + r2

, (∗)

where M and b are constants.The orbital radius and velocity of the cluster at
apocentre are ra and va, where rava �

√
GMb and ra � b. By considering the

specific angular momentum of a circular orbit at r = b (or otherwise), show
that the orbital radius at pericentre rp is much smaller than b and that it is
approximately given by

rp ≈ rava/
√
GM/b.

[9]

Explain without calculation how this result would change if the effect of
gravitational drag was included. [1]

(ii) Show that the path of the orbit for a particle with specific angular
momentum h in a spherical potential with radial acceleration fr is given by

d2u

dφ2
+ u = − fr

h2u2
,

where u = r−1 and φ is the azimuthal angle in the orbital plane. [7]

A cluster orbits at large radii (r � b) in a galaxy whose potential is given
by (∗) from Part (i). By neglecting terms of order (b/r)2 or higher, derive an
approximation to fr and to the path of the cluster’s orbit r(φ). [8]

Describe the orbit and determine the rate at which it undergoes apsidal
precession. [5]

TURN OVER...
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Question 8Y - Topics in Astrophysics

(i) Applying the instantaneous recycling assumption to a simple closed
box model of galactic chemical evolution, the evolution of the mass of metals
is given by

d(ZMg)

dt
= −Z ψ + Z ψR + yz (1−R)ψ, (∗)

where Z is the mass fraction of metals in the gas, Mg is the mass of gas in
the closed box, ψ is the star formation rate (M� yr−1), R is the mass fraction
of stellar material returned to the interstellar medium by each generation of
stars, and yz is the yield of new metals per stellar generation. Explain the
physical meaning of each of the three terms on the right hand side of (∗), and
give the corresponding expression for the evolution of the gas mass dMg/dt. [3]

Provide integral expressions for R and yz in terms of stellar mass m, the
mass fraction of newly produced metals pz,m, the mass of stellar remnants
Mrem(m), and the stellar initial mass function φ(m). [3]

Show that in the case of this simple model where the system starts with
pure primordial gas, Z is given by

Z = yz ln (1/µ) ,

where µ = Mg/Mt, and Mt is the total mass of the system. [4]

(ii) An important extension to the simple closed box model for galactic
chemical evolution presented in Part (i) is to consider outflow of gas. In this
leaky box model, outflow occurs at a rate given by

W = λ (1−R)ψ,

where λ ≥ 0 is a parameter describing the efficiency of the outflowing wind
and other variables have the same meaning as in Part (i). For the case of
this leaky box model, derive an expression for the metallicity of the gas as a
function of λ, µ, and yz, where µ and yz are as defined in Part (i). [10]

What is the effect of considering outflows on the rate of metal enrichment
of the interstellar gas? [2]

The occurrence rate of Jupiter-mass planets, fJ, is described by

fJ = 0.1mZ∗/Z�,

where Z∗ is the stellar metallicity (the mass fraction of metals in the star),
Z� = 0.01 is the solar metallicity, and m is the stellar mass in units of solar
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mass. A survey of stars has found an occurrence rate of 3% for Jupiter-mass
planets around stars of 1–2 M�. What is the metallicity of the stars required
to explain this observation? You may assume an initial mass function of the
form φ(m)dm ∝ m−5/2dm. [5]

Comment on the likely age of the stars relative to the age of the Sun. [1]

Giving your assumptions, estimate the likely bulk metallicity of the planets,
assuming they formed by core accretion. [2]

END OF PAPER
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Question 1X - Relativity

(i) In Minkowski space, an inertial frame S ′ is moving along the x-axis of
an inertial frame S with coordinates (t, x, y, z). An observer at rest in S ′ sees a
flash of red light when they are at xR and a flash of blue light when they are at
xB. The red flash happens before the blue and the time difference between the
two events measured by the observer at rest in S ′ is ∆t′RB. Find the velocity
of S ′ relative to S. [3]

Comment on the order of the two flashes and the time elapsed between the
red and the blue flash for an observer at rest in S. [2]

A muon with a total energy of 2 GeV and lifetime τ = 2.2µs is created
in the Earth’s atmosphere at an altitude L = 10 km above the ground. The
muon moves vertically towards Earth. Does the muon reach the ground? [5]

[The muon rest mass is mµ = 105.7 MeV/c2.]

(ii) A particle of mass m, speed u, energy E and momentum p moves in
the positive x-direction of an inertial frame in Minkowski space. Using the
4-momentum or otherwise, verify that E2− p2c2 is invariant under a standard
Lorentz boost in the x-direction. [5]

Calculate the value of this Lorentz invariant. [2]

Show, in detail, that an electron-positron pair cannot be created from a
single isolated photon and comment on how pair creation therefore normally
proceeds. [7]

A pion with rest mass mπ decays into a muon with rest mass mµ and a
massless neutrino. Calculate the kinetic energy of the muon in the rest frame
of the pion in terms of mπ and mµ. [6]
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Question 2Y - Astrophysical Fluid Dynamics

(i) A fully ionized hydrogen plasma can be considered as the superposition
of a proton fluid (number density n+ and bulk velocity u+) and an electron
fluid (number density n− and bulk velocity u−). Starting from the continuity
equation for each fluid, derive the standard form for charge conservation

∂q

∂t
+∇ · j = 0.

As part of your answer you should explicitly relate the net charge density q
and the net current density j to the quantities given above. [5]

Further, this plasma has no externally imposed magnetic field and is “cold”.
By considering the corresponding equation of motion for the charged fluids in
the centre-of-mass rest frame of the plasma, i.e.,

(m±)
∂u±

∂t
= ± eE,

where m+ = mp and m− = me, show that any small charge imbalances oscillate

with angular frequency ωpl ≈
√
e2 n−/(me ε0). [5]

(ii) Suppose that fluctuations within a plasma have a spatial scale ` and
timescale τ . Use Maxwell’s equations to show that∣∣∣ 1

c2
∂E

∂t

∣∣∣/|∇ ×B| ∼ u2

c2
,

where u ∼ `/τ is a characteristic velocity. [5]

Use this result to justify the neglect of displacement current in standard
non-relativistic magnetohydrodynamics (MHD). [3]

Consider a plasma in a state of equilibrium at rest (u = 0), with uniform
density ρ = ρ0, uniform pressure p = p0, and threaded by a uniform vertical
magnetic field B = B0 ẑ. Suppose that it is subject to perturbations with plane
wave form, exp [i(k · x− ωt)], that do not necessarily satisfy the condition
`/τ � c. In this case the standard momentum equation of MHD is replaced
by

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+

1

µ0

(
∇×B− 1

c2
∂E

∂t

)
×B,

where E is the electric field induced by the magnetic field perturbations.

CONTINUE OVER...
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Restricting attention to perturbations that propagate in the ẑ-direction
and are transverse (that is velocity perturbations orthogonal to k), show that

ω2

(
ρ0 +

B2
0

µ0c2

)
=
B2

0

µ0

k2.

[10]

Derive an expression for the phase velocity of these waves and comment on
the cases of (a) a very weak, and (b) a very strong magnetic field. [2]
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Question 3X - Introduction to Cosmology

(i) The cosmic microwave background (CMB) radiation is described ac-
curately by a blackbody distribution. The proper number density of photons
with frequency in the range ν and ν + dν is given by

dnγ(ν) =
8π

c3
ν2 dν

[exp (hPν/(kBT ))− 1]
,

where kB and hP are the Boltzmann and Planck constants. The present day
temperature is, T0 = 2.726 K. Show that the number density of CMB photons
is

nγ ≈ 60.42

(
kBT

hPc

)3

. (∗)

Evaluate nγ at the present day. [5]

Calculate the baryon-to-photon ratio η = nb/nγ in terms of the parameter
combination Ωbh

2, where Ωb is the density of baryons in units of the critical
density ρc = 1.88× 10−26 h2 kg m−3, and h is the Hubble constant H0 in units
of 100 km s−1 Mpc−1. [4]

How does η evolve with time? [1]

[You may assume:
∫∞
0
x2(ex − 1)−1 dx = 2.4041 and

∫∞
0
x2e−x

2
dx =

√
π/4.]

(ii) For a uniform distribution of particles of species i and rest mass mi in
thermal equilibrium at temperature T , the number density of particles with
momentum between p and p+ dp is given by

dni(p) =
4π

h3P
gi

p2dp

[exp ((E − µi)/(kBT ))± 1]
,

{
+1 for fermions,
−1 for bosons,

where E2 = p2c2 + m2
i c

4, gi is the number of spin states, µi is the chemical
potential and kB and hP are the Boltzmann and Planck constants. In the
non-relativistic limit, show that the number density of particles is

ni ≈
π3/2

h3P
gi (2mikBT )3/2 exp

(
−(mic

2 − µi)/(kBT )
)
.

[6]

CONTINUE OVER...
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Prior to recombination, the reaction

H + γ ←→ p + e−,

is in statistical equilibrium. Assuming that the particles remain in statistical
equilibrium, show that the ionization fraction x = np/(np + nH) satisfies

1− x
x
≈ np

(
h2P

2πmekBT

)3/2

exp (Q/(kBT )) , (∗∗)

where np, nH, mp and mH are the number densities and masses of protons and
hydrogen atoms, me is the electron mass, and Q = (mp + me −mH) c2 is the
binding energy of hydrogen.

Using the result (∗) of Part(i), show that (∗∗) can be written as

1− x
x2
≈ 3.84 η

(
kBT

mec2

)3/2

exp (Q/(kBT )) ,

where η is the baryon-to-photon ratio η = nb/nγ. [8]

Why does recombination occur at temperatures with kBT � Q? [4]

Why does (∗∗) give a poor description of recombination? [2]
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Question 4Z - Structure and Evolution of Stars

(i) A star, with an apparent magnitude mV = 2.5, is found to have a
parallax of 0.002 arcsecond. What is its absolute magnitude in V ? What type
of star would have such a value of MV, knowing that MV = +0.6 for a star of
spectral type A0V? [3]

The star explodes as a Type II supernova, increasing its luminosity by a
factor of 50,000. Calculate the new values of mV and MV. [1]

Spectroscopy of the supernova remnant reveals P-Cygni profiles for the
Balmer lines of hydrogen. The shortest wavelength of the Hα profile is mea-
sured to be λmin ' 6345 Å. The rest-frame wavelength of Hα is 6563 Å. Deduce
the expansion velocity of the remnant. [2]

If this expansion velocity is maintained for 100 days, would it be possible
to resolve the supernova remnant from images obtained with a ground-based
telescope? [4]

(ii) A gas cloud collapses to form a star cluster. The number of stars
formed with masses in the range from M to M + dM is given by,

dN = φ(M) dM.

The function φ(M) is observed to have the form, φ(M) ∝ M−2.35. Assuming
that the total luminosity of the cluster is dominated by stars on the main
sequence for which L ∝ M3.5, calculate the change in the luminosity of the
cluster as the cluster ages and the main sequence turn-off moves from 2M� to
1M�. [5]

The function ξ(M) denotes the amount of mass contained in stars with
masses in the range from M to M + dM ,

M dN = ξ(M) dM.

Deduce a functional form for ξ(M). [1]

Let Mmin and Mmax respectively denote the minimum and maximum mass
of stars on the main sequence. As stars leave the main sequence, those with
mass M ≥ MSN return a fraction of their mass equal to Mexp = 0.9M to the
interstellar medium in a supernova explosion. Stars with M < MSN end their
lives as a white dwarf with mass MWD = 0.6 M�, returning the remainder of
their main sequence mass to the interstellar medium. Derive an expression for
the fraction of the total mass of the cluster returned to the interstellar medium
when the main sequence turn-off occurs at a mass of 1 M�. [9]

CONTINUE OVER...
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By choosing suitable values of Mmin, Mmax, and MSN, provide a numerical
estimate of the fraction of the cluster mass returned to the interstellar medium.

[2]

Explain what is meant by a ‘top-heavy’ IMF, and put forward an obser-
vational test that may indicate that the IMF of a burst of star formation is
top-heavy. [3]
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Question 5Z - Statistical Physics

(i) What systems are described by microcanonical ensembles and canonical
ensembles? [2]

Consider the Gibbs formula for entropy, S = −kB
∑

n p(n) ln p(n), where
p(n) is the probability of being in microstate n and kB is the Boltzmann con-
stant. Show how maximising entropy subject to appropriate constraints leads
to the correct forms of the probability distributions for (a) the microcanonical
ensemble and (b) the canonical ensemble. [8]

(ii) Derive an expression for the entropy in the canonical ensemble in terms
of the partition function Z and temperature T . [5]

A system consists of N non-interacting particles fixed at points in a lattice
in thermal contact with a reservoir at temperature T . Each particle has three
states with energies −ε, 0, ε, where ε > 0 is a constant. Compute the average
energy, E, and the entropy, S. [8]

Evaluate E and S in the limits T →∞ and T → 0. [4]

Describe a configuration for this system that would have negative temper-
ature. Justify your answer. [3]

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) Let {|↑ 〉, | ↓ 〉} be a basis of Sz eigenstates for a spin-1
2

particle. Show
that the eigenvalues are +~/2 and −~/2. . [5]

Derive from the eigenvalue equation that the respective, normalised eigen-
states |↑θ〉 and |↓θ〉 of n · S, where n = (sin θ, 0, cos θ), are

|↑θ〉 = cos (θ/2) |↑ 〉+ sin (θ/2) |↓ 〉, |↓θ〉 = − sin (θ/2) |↑ 〉+ cos (θ/2) |↓ 〉.
[5]

[ You may assume that tan(θ/2) = [1 − cos(θ)]/ sin(θ) = sin(θ)/[1 + cos(θ)].
The Pauli sigma matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

]

(ii) Two spin-1
2

particles, with eigenstates and eigenvalues as described in
Part (i), are in the combined spin state

|ψ〉 =
|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉√

2
.

Show that this state is unchanged under the substitution

(|↑ 〉, |↓ 〉) 7→ (|↑θ〉, |↓θ〉). [4]

Hence, show that |ψ〉 is an eigenstate, with eigenvalue zero, of each Carte-
sian component of the combined spin operator S = S(1) + S(2), where S(i) is
the spin operator of the ith particle. [8]

Two spin-1
2

particles are in the spin state

|χ〉 =
|↑ 〉|↓θ〉 − |↓ 〉|↑θ〉√

2
.

A measurement of Sz for the first particle is carried out, followed by a mea-
surement of Sz for the second particle. List the possible outcomes for this pair
of measurements and find the total probability, in terms of θ, for each pair of
outcomes to occur. [4]

For which of these outcomes is the system left in an eigenstate of the
combined total spin operator S·S, and what are the corresponding eigenvalues?

[4]

[ The Pauli sigma matrices are as given in Part (i). ]
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Consider a spherically symmetric galaxy with a Hernquist density pro-
file, in which the density at radius r given by

ρ(r) =
M

2π

a

r

1

(a+ r)3
, (∗)

where M and a are constants. Show that the corresponding potential is

Φ(r) = − GM

(a+ r)
.

[3]

Find an expression for the total mass contained within radius r and com-
pare this value, in the limits r → 0 and r → ∞, to the corresponding values
when a = 0. [5]

Explain whether the Hernquist model is a good description of the potential
in the outer parts of disc galaxies. [2]

(ii) The gravitational drag force on a body of mass m moving at velocity
v through a medium of density ρ can be written in the form

FD ∼ −πρ
G2m2

v3
v,

where v = |v|. Explain what is meant by the gravitational drag force. [3]

Assuming that the impact parameter at which particles experience a de-
flection by 90◦ is b = Gm/v2, explain why the expression for the drag is of this
form. [5]

A dwarf galaxy of mass m is moving radially inwards through a larger
galaxy of mass M , whose radial density profile is described by the Hernquist
profile given by (∗) in Part (i). Assuming that the dwarf galaxy arrives in
the outer parts of the galaxy with its free-fall velocity from infinity, estimate
the radius, rdrag, at which the gravitational drag force becomes the dominant
component of the total force experienced by the dwarf galaxy. [10]

Evaluate rdrag in the case M = 1011M�, m = 108M�, a = 1 kpc. [1]

Explain how the velocity of the dwarf galaxy evolves at orbital radii inside
rdrag. [1]

TURN OVER...
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Question 8Y - Topics in Astrophysics

(i) Describe the possible outcomes of the collision between two planetesi-
mals in terms of the specific energy of impact, Q, and the size of the objects.

[6]

Estimate the minimum radius a planetesimal would need to have to sur-
vive impact from an interstellar asteroid travelling with a relative velocity
of 90 km s−1 and having a mass of 90,000 kg. You may assume a density of
2000 kg m−3 for the planetesimal. [4]

(ii) A spherical planetesimal of radius 200 km is slowly drifting towards the
Sun. The planetesimal completes a full rotation once every 3 hours, and its
axis of rotation is perpendicular to the plane of its orbit around the Sun. It
has a density of 2000 kg m−3 and a material strength of 1 MPa. Determine the
distance from the Sun where the planetesimal would be tidally disrupted. You
may assume that the deformation and relaxation of the planetesimal occur on
much shorter timescales than its rotation and that the equation for the tidal
force Ft per unit mass experienced by the planetesimal is given by

Ft

Mp

= 2
GM�Rp

r3
,

where Mp and Rp are the planetesimal mass and radius, and r its distance
from the Sun. [3]

At the tidal disruption location calculated above, estimate the proportion
of energy input to the planetesimal from tidal heating relative to that from
solar radiation. [9]

Estimate how close the planetesimal can approach the Sun before tidal
heating alone causes it to melt (that is ignoring energy input from solar radia-
tion). You may assume a melting temperature of 1400 K for the planetesimal
and rapid heat transport through the body. [6]

As the planetesimal heats up, what feedback occurs to diminish the mag-
nitude of tidal heating, limiting the temperature rise and degree of melting?

[2]

END OF PAPER
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Question 1X - Relativity

(i) The energy-momentum tensor of an ideal fluid filling a universe has the
form Tµν = αuµ uν + β gµν , where uµ is the four-velocity of the fluid and gµν
is the metric. Derive α and β in terms of the mass density ρ and the pressure
p. [4]

The Einstein field equations with a cosmological constant Λ can be written
as

Rµν −
1

2
Rgµν + Λ gµν = −8π G

c4
Tµν ,

where Rµν and R are the Ricci tensor and the Ricci scalar, respectively. Con-
sider a universe with a positive cosmological constant and a vanishing energy-
momentum tensor. Derive the equation of state p(ρ) of an ideal fluid that
gives equivalent field equations with a vanishing cosmological constant. Give
a possible physical interpretation of such a fluid. [4]

Calculate the trace of Tµν for such a fluid. [2]

(ii) In an expanding universe described by the Robertson-Walker metric,
the line element is given by

ds2 = c2dt2 − a2(t)
[

dr2

1−Kr2
+ r2dΩ2

]
= c2dt2 − a2(t) γij dxi dxj,

where xµ = (t, r, θ, φ), K is the curvature constant, and a(t) the scale factor.
The Ricci tensor in terms of the metric connection Γ is given by

Rµν =
∂Γλµλ
∂xν

−
∂Γλµν
∂xλ

+ Γηµλ Γλνη − Γηµν Γλλη.

Derive that

R00 = 3
ä

a
,

where overdots denote differentiation with respect to time t. [8]

The remaining values of the Ricci tensor are R0i = 0 and

Rij = − 1

c2
(
äa+ 2ȧ2 + 2Kc2

)
γij.

Use the Einstein field equations as given in Part (i) to derive the Friedmann
equations for an empty universe with Tµν = 0 and a non-vanishing cosmological
constant Λ. [6]
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Derive the minimum scale factor of such a universe in terms of Λ and K for
the case where the universe is closed and the cosmological constant is positive. [4]

Calculate the expansion history a(t) of a flat and empty universe with a
positive cosmological constant and comment on the fate of such a universe. [2]

TURN OVER...
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a galaxy cluster whose gravitational potential is dominated
by a spherically symmetric dark matter halo and is given by

Φ = −a2 ln

[
1 +

(
r

r0

)2
]
,

where a is a positive constant, r is the distance from the cluster centre, and
r0 = 20 kpc. An isothermal intracluster medium (ICM) with isothermal sound
speed cs is in a state of hydrostatic equilibrium within this potential, where
cs ≈ a. Derive that the density profile for the ICM is

ρ = ρ0/[1 + (r/r0)
2],

where ρ0 is a constant. [5]

If the ICM has temperature T = 7× 107 K, and a central electron number
density ne = 5 × 10−2 cm−3, calculate the radius at which the electron mean-
free-path is 20 kpc. [5]

[You may assume that the electron mean-free-path is given by

λe = 2.3

(
T

107 K

)2 ( ne

10−2 cm−3

)−1
pc,

where ne is the electron number density.]

(ii) An atmosphere is in hydrostatic equilibrium with a gravitational field
g = −g(z) ẑ. This atmosphere can support internal gravity waves with wavevec-
tor k = (kx, ky, kz) and a dispersion relation

ω2 =
k2x + k2y

k2x + k2y + k2z
N2, (∗)

where N is the Brunt-Väisälä frequency given by

N2 ≡ g(z)

γ

∂

∂z
ln
(
Pρ−γ

)
.

Explain the connection between this dispersion relation and the Schwarzschild
criterion for convective stability. [3]

Show that the wavevector and group velocity (vg = ∇k ω) of these waves
are orthogonal to each other. [6]
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Assuming that the dispersion relation (∗) is a valid local approximation for
the ICM of Part (i), sketch N2 as a function of radius, noting specifically the
behaviour for r � r0 and r � r0. [7]

The orbital motions of galaxies at r ∼ r0 excite internal gravity waves in
the ICM with frequency ω0 < N . With reference to your sketch of N2, explain
why oscillatory modes will be confined to a region r− < r < r+, and give an
implicit equation for r±. [4]

TURN OVER...
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Question 3X - Introduction to Cosmology

(i) The energy-momentum tensor of a uniform perfect fluid with energy density
ρ and pressure p at rest in locally Minkowski coordinates has components

T00 = ρ, Ti0 = 0, Tij = p δij,

in units with c = 1. The energy-momentum tensor of a scalar field φ(t) with
potential V (φ) is

Tµν = ∂µφ ∂νφ−
1

2
gµν ∂

κφ ∂κφ+ gµν V (φ).

Show that if spatial gradients can be ignored, the scalar field acts as a perfect
fluid with energy density and pressure

ρφ =
1

2
φ̇2 + V (φ),

pφ =
1

2
φ̇2 − V (φ),

where overdots denote differentiation with respect to time. [5]

Assume that the field is slowly rolling, φ̇2 � V (φ). Use the equation-of-
state parameter, w = p/ρ, to discuss the relevance of this result to,

(a) inflation in the early Universe,

(b) dark energy at late times.

[5]

(ii) The equation of motion in Planck units of a uniform scalar field, φ(t), in
a Friedmann-Robertson-Walker universe with scale factor R(t) is

φ̈+ 3H φ̇ = −V ′,

where overdots denote differentiation with respect to time and V ′ = ∂V/∂φ.
The Hubble parameter H(t) = Ṙ/R is given by

H2 =
1

3
(ρm + ρr + ρφ),

where ρm, ρr and ρφ are the energy densities of dark matter, radiation and
the scalar field φ. Using the expressions for pφ and ρφ given in Part (i) or
otherwise, express the parameter

x =
φ̇2

2V
,

6



in terms of the equation-of-state parameter wφ = pφ/ρφ of the scalar field. [3]

Use the equation of motion to show that

ξ ≡ 1

6

d lnx

d lnR
= −V

′

V

ρφ

3 φ̇ H
− 1.

[10]

If the field is slowly evolving, so that ξ � 1, show that

3 (1 + wφ)

Ωφ

≈
(
V ′

V

)2

,

where Ωφ = ρφ/(3H
2) is the energy density of the scalar field in units of the

critical energy density. [4]

It has been conjectured that in a consistent quantum theory of gravity
|V ′/V | > 1. If the dark energy is a slowly evolving scalar field, and Ωφ ≈ 0.7 at
the present day, show that such a conjecture leads to a bound on the equation-
of-state parameter wφ. [2]

Is this bound consistent with observations? [1]

TURN OVER...
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Question 4Z - Structure and Evolution of Stars

(i) The luminosity of a star in the V -band can be approximated as

LV = 4π2R2

∫ νV2

νV1

Bν dν,

where R is the star’s radius, νV1, νV2 are the minimum and maximum frequen-
cies of the V filter bandpass, Bν(T ) = (2hν3/c2)[exp(hν/(kBT )) − 1]−1 is the
Planck function, and kB is the Boltzmann constant. Similar relations apply to
the luminosity in the B-band and the U -band. Show that if a star has such a
high effective temperature that hν � kBT for the radiation in the U , B, and
V bands, the (B − V ) colour can be approximated by

(B − V ) ' −2.5 log10

(
ν3B2 − ν3B1

ν3V2 − ν3V1

)
,

and is therefore a constant independent of the temperature T , and that the
same applies to the (U −B) colour. [4]

Interstellar dust absorbs and scatters radiation preferentially at shorter
wavelengths. A star that is dimmed by E magnitudes in the V -band is dimmed
by 1.3E magnitudes in the B-band and by 1.5E magnitudes in the U -band.
How does interstellar extinction affect the position of a star in a (U − B) vs
(B − V ) diagram? [3]

Show that it is possible to define a parameter Q = (U − B)−K(B − V ),
where K is a constant you should determine, such that Q is independent of
the amount by which the star is affected by interstellar extinction. [3]

(ii) In a simple model of the internal structure of a spherical star, the
distributions of temperature T and density ρ with radius are approximated by,

T = Tc exp(−r2/a2), ρ = ρc exp(−nr2/a2),

where r is the distance from the centre, Tc and ρc are the values of temperature
and density at r = 0, and n and a are positive constants. The energy generation
rate is assumed to be of the form ε = ε0ρT

η, where η is a another positive
constant. Let L(r) be the luminosity within radius r. Show that the total
luminosity of the star is

L(∞) =
π3/2ε0 a

3 ρ2c T
η
c

(2n+ η)3/2
.

[5]
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Let M(r) be the total mass within radius r. Show that the inverse of the
mass-to-light ratio of the star is

L(∞)

M(∞)
= ε0 ρc T

η
c

(
n

2n+ η

)3/2

.
[5]

Show that the ratio L/M decreases by a factor [n/(2n+ η)]3/2 from the
centre to r =∞. [5]

Assuming hydrostatic equilibrium, derive an approximation for the pressure
profile P (r) near the core, where r � a/

√
n, to leading order in nr2/a2. [5]

[Hint: you may use the definite integral: In =
∫∞
0
xn e−αx

2
dx = n−1

2α
In−2 and

I0 = 1
2

√
π
α

.]

TURN OVER...
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Question 5Z - Statistical Physics

(i) What distinguishes bosons from fermions? [1]

Consider a gas of N non-interacting ultra-relativistic electrons in a large
fixed 3-dimensional cubic volume V . Show that the density of states g(E) at
energy E is,

g(E) =
V

π2~3c3
E2. [5]

Using the grand partition function, show that pV = A〈E〉, where p is the
pressure, 〈E〉 is the average energy, and A is a numerical constant that you
should determine. [4]

(ii) What are the implications of the properties of fermions for their occu-
pation number of states and for their ground state at low temperature? [2]

For the gas of non-interacting ultra-relativistic electrons described in Part
(i), show that the Fermi energy EF = D (N/V )1/3, where D is a constant that
you should determine. [5]

Show that at zero temperature pV a = K, where a and K are constants
that you should determine. You may express your answers in terms of the
constant A in Part (i). How does this compare to an ultra-relativistic classical
ideal gas? [5]

Now consider the same system with a magnetic field B, which changes
the energy of an electron by ±µBB depending on whether the spin is parallel
or anti-parallel to the magnetic field, and µB is a constant. Assuming that
µBB � EF, show that, at zero temperature, the total magnetic moment is
given by

M ≈ αµγB B
δ g(EF),

where g(EF) is the density of states at energy EF and α, γ and δ are numerical
constants that you should find. Then find the susceptibility, χ, of the gas at
zero temperature. Comment on the result. [8]
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Question 6Z - Principles of Quantum Mechanics

(i) Consider a hydrogen atom with {|n, `,m〉} denoting the simultaneous
eigenstates of the Hamiltonian H, and the angular momentum operators L2

and Lz. Show that [Lz, z] = 0 and hence that 〈n′, `′,m′|z|n, `,m〉 vanishes
unless m′ = m. [5]

Show that parity implies that this matrix element vanishes if `′ = `. [5]

(ii) Consider the hydrogen atom as in Part (i). Given that [L2, [L2, z]] =
2~2(L2z+zL2), show that this relation implies that 〈n′, `′,m′|z|n, `,m〉 vanishes
unless |`′ − `| = 1 or `′ = ` = 0. [8]

A hydrogen atom in its ground state |n, `,m〉 = |1, 0, 0〉 is placed in a
constant, uniform electric field E. With reference to the atom’s charge distri-
bution, but without detailed calculation, give a physical explanation of why
there is no correction of first-order in E to the ground state energy, but higher-
order corrections are possible. [6]

Show that the second-order correction to energy of the ground state caused
by the electric field is

e2|E|2

R

∞∑
n=2

n2

1− n2
|〈n, 1, 0|z|1, 0, 0〉|2 ,

where −R is the unperturbed energy of |1, 0, 0〉. [6]

[You may assume that, when a Hamiltonian is perturbed by ∆H, the second-
order correction to the ground state energy is∑

α

|〈α|∆H|φ〉|2

Eφ − Eα
,

where |α〉 are a complete set of unperturbed eigenstates states orthogonal to the
unperturbed ground state |φ〉, and Eα, Eφ are their unperturbed energies.]

TURN OVER...
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) An observer comoving with the Sun measures the Doppler shifts of
clouds along a line of sight that makes an angle l with the vector pointing
from the Sun to the Galactic Centre (that is the clouds along a given line of
sight all have Galactic longitude l). Explain, making clear your assumptions,
how it is possible to construct the Galactic rotation curve using lines of sight
at longitudes in the range l < 90◦ or l > 270◦. [7]

What other information is needed if lines of sight with 90◦ < l < 270◦ are
used instead? [2]

Explain why it is likely that the orbits of gas clouds are closer to being
circular than the orbits of stars. [1]

(ii) A cylindrical coordinate system is located at the centre of a thin ring
of mass m and radius a, with the z-axis being oriented perpendicular to the
plane of the ring. Show that the potential generated by the ring at radius
R� a in the z = 0 plane can be approximated by

Φ(R) ≈ −Gm
a

(
1 +

R2

4a2

)
.

[10]

A test particle experiences the potential produced by such a ring as well as
that due to a point mass, M , located at the origin. Determine the minimum
value of M such that the particle can execute stable circular orbits (in the
plane of the ring) at all radii interior to the ring. [10]

[You may assume if necessary that the solution to Laplace’s equation for an
axisymmetric matter distribution can be written in the form

Φ =
∞∑
n=0

(Anr
n +Bnr

−(n+1))Pn(cos θ).

The first three Legendre polynomials are given by P0(x) = 1, P1(x) = x,
P2(x) = (3x2 − 1)/2.]

12



Question 8Y - Topics in Astrophysics

(i) Describe three processes by which stellar binaries can form in a cluster,
as well as the role (if any) of tides in those processes. [3]

Consider a protoplanetary disc orbiting a star of mass M? which has a
solid mass surface density of Σ at a distance from the star of r. A fraction
η = 10% of the disc is converted into single planetesimals of mass Mp. Derive
the following constraint on the vertical thickness H of the planetesimal disc
such that interactions amongst the planetesimals result in the formation of
binary pairs,

H/r .

[
η (Mp/M?)

2

(
Σ

M?/r2

)]1/7
.

You may assume that relative velocities amongst the planetesimals are set by
their vertical motion. [5]

Determine the above constraint for the following situations involving a Sun-
like star and 1019 kg planetesimals: (a) terrestrial planet formation at r = 1 au
for which Σ = 2M⊕ au−2, (b) Kuiper belt formation at r = 40 au for which
Σ = 10−4M⊕ au−2. [2]

(ii) A planetesimal of radius Rp and density ρp is orbiting a white dwarf of
mass M? and density ρ?. Interactions with an outer planetary system result in
it being scattered onto an orbit with pericentre at a distance rp from the white
dwarf. Derive the critical disruption pericentre rp,crit for the planetesimal to
be tidally disrupted. [3]

A planetesimal reaches this critical disruption pericentre for the first time.
Providing justification, sketch the shape of the planetesimal as it passes through
pericentre, and describe the subsequent evolution of the planetesimal fragments
and how it depends on their initial location within the planetesimal. [4]

To approximate the tidal disruption process, consider the planetesimal as it
reaches pericentre, which is in the x-direction at x = rp from the white dwarf,
where rp � Rp. Ignore any tidal perturbation up to this point, and so assume
the planetesimal has remained spherical. Now imagine that the planetesimal’s
self-gravity and internal strength are turned off during pericentre passage.
Derive the new semimajor axis of the portion of the planetesimal which, at
the time of pericentre passage, was at a distance from the white dwarf of
x = rp + d. You may assume that the planetesimal’s orbital velocity v and
separation from the star r are related as 0.5 v2−GM?/r ≈ −0.5GM?/a, where
a is the semimajor axis of its orbit. [4]

CONTINUE OVER...
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Derive a constraint on the planetesimal’s orbital eccentricity such that all
of its fragments remain bound to the white dwarf following disruption. [2]

For the same assumptions for the tidal disruption process, now consider a
planetesimal on an initially parabolic orbit. Show that the rate at which mass
returns to the point of disruption as a function of time t is of the form dM/dt =
A t−5/3 +B t−3, where A and B are constants that should be determined. [5]

Comment on the subsequent evolution of the bound fragments. [2]

END OF PAPER
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Question 1X - Relativity

(i) State Birkhoff’s theorem. [2]

Assume spherical polar coordinates xµ = (t, r, θ, φ) to describe a 4-dimensional
spacetime. Consider a spherically symmetric non-rotating static thin shell of
matter with mass M located at distance R from the origin. Use Birkhoff’s
theorem to derive a metric for the spacetime for r < R and r > R. [4]

For which values of M and R is the shell hidden behind an event horizon. [2]

Comment on whether you would expect such a static shell of matter to be
a stable solution of the Einstein field equations. [2]

(ii) A spaceship approaches a dark star on a radial geodesic and sends
photons radially outwards as distress signals to a distant observer who is plan-
ning a rescue mission. The dark star is a static spherically symmetric object
of mass M and radius R. Assume that the spaceship started its journey at
infinity from rest. Consider the Lagrangian for particles orbiting outside a
spherically symmetric mass distribution,

L = c2

(
1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1

ṙ2 − r2θ̇2 − r2 sin2(θ)φ̇2,

where L = c2 for massive particles and L = 0 for massless particles. Overdots
denote differentiation with respect to an affine parameter λ. Comment on the
value of µ and use the Euler-Lagrange equations

∂L

∂xµ
=

d

dλ

(
∂L

∂ẋµ

)
,

to find the conserved quantities for the spaceship and the emitted photons. [6]

What is the energy of photons received by a stationary observer at radius
robs in terms of the energy of the photons at infinity? [10]

What is the maximum redshift of a signal detected by a distant observer for
which the spacecraft is at a radius r from which a rescue mission is possible?

[4]

2



Question 2Z - Astrophysical Fluid Dynamics

(i) Explain the difference between Eulerian and Lagrangian perturbations,
as well as why it is useful to consider Lagrangian perturbations when consid-
ering adiabatic fluctuations of a stratified system. [2]

Starting from the Lagrangian form of the continuity equation, show that
the Lagrangian density perturbation ∆ρ and perturbation displacement ξ are
related by ∆ρ+ ρ0∇ · ξ = 0, where ρ0 is the unperturbed density. [3]

Proceed to show that the linearized continuity equation for Lagrangian
perturbations about an equilibrium that is stratified in the z-direction is

∂∆ρ

∂t
+ ρ0

∂∆uz
∂z

= 0, (∗)

where ∆uz is the z-component of the corresponding velocity perturbations. [5]

[You may assume that Eulerian perturbations δX and Lagrangian perturbations
∆X are related as δX = ∆X − (ξ · ∇)X0.]

(ii) Consider a local patch of a geometrically thin accretion disk that sur-
rounds a central point mass M . In the comoving frame of that patch, the
disk material is assumed to form an isothermal hydrostatic atmosphere with
adiabatic sound speed cs. Show that the density profile is

ρ0 = A exp [−γΩ2z2/(2c2
s )],

where Ω is the angular frequency of the disk at that location, γ is the adiabatic
index, z is the distance from the mid-plane, and A is the mid-plane density. [5]

Now suppose that this atmosphere is subjected to vertical, adiabatic pertur-
bations. Starting from its standard form, show that the linearized momentum
equation in the z-direction is

∂∆uz
∂t

= − c
2
s

ρ0

∂∆ρ

∂z
− Ω2ξz,

where ∆ρ is the Lagrangian density perturbation, ∆uz is the vertical velocity,
and ξz is the vertical displacement. [6]

CONTINUE OVER...
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Show that density perturbations which have time dependence ∝ e−iωt obey

∂2∆ρ

∂z̃2
+ z̃

∂∆ρ

∂z̃
+

1

γ

(
ω2

Ω2
− 1

)
∆ρ = 0,

where z̃ = (γ Ω2/c2
s )1/2z. You may assume the result (∗) from Part (i) if

necessary. [6]

The disk atmosphere can support normal modes for which ∆ρ → 0 as
z →∞. Using the result above, show that there is a spectrum of such modes
with frequencies ω = Ω(1 + nγ)1/2, where n is a non-negative integer, and
comment on the nature of the behaviour for n = 0. [3]

[You may assume without proof that solutions y(x) to the ordinary differential
equation y′′+xy′+ny = 0 diverge as y ∼ ex

2/2, unless n is an integer in which
case y(x) decays as y ∼ e−x

2/2.]
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Question 3X - Introduction to Cosmology

(i) Consider perturbations of a Friedmann-Robertson-Walker universe dom-
inated by a pressureless fluid with mean density ρ. On scales λ � ct, the
perturbations can be described by Newtonian theory leading to the non-linear
equations,

∂δ/∂t+∇ · (u(1 + δ)) = 0,

∂u/∂t+ 2 (Ṙ/R)u + (u · ∇)u = −(1/R2)∇Φ, (∗)
∇2Φ = 4π Gρ δ R2,

where R(t) is the scale factor, δ = (ρ−ρ)/ρ is the fractional overdensity, u(t) =
ẋ(t) is the comoving velocity and Φ is the gravitational potential. Spatial
derivatives are with respect to the comoving coordinate x(t) and overdots
denote differentiation with respect to time. If the perturbations are small,
show that the perturbation equations (∗) give the linear perturbation equation,

∂2δ

∂t2
+ 2

Ṙ

R

∂δ

∂t
= 4πGρ δ. (∗∗)

[5]

Find the solutions to (∗∗) in a matter-dominated universe with zero cur-
vature and Λ = 0 for which R(t) ∝ t2/3. [5]

(ii) Using the definitions and notation of Part (i), consider perturbations in
a Friedmann-Robertson-Walker universe satisfying the equations (∗). Assume
that the fluid flow is irrotational so that the comoving peculiar velocity can be
written as u = −Ḋ∇ψ, where ψ is a time independent velocity potential and
D(t) satisfies the linear density perturbation equation (∗∗) of Part (i). Show
that in linear perturbation theory, u is related to the gravitational acceleration
∇Φ as

u = −Ḋ
D

∇Φ

4π GρR2
.

[5]

Define w = u/Ḋ. Show that the second non-linear equation in (∗) can be
written as

∂w

∂D
+ (w · ∇)w = S = − 1

Ḋ2

[
1

R2
∇Φ + 4π Gρ

D

Ḋ
u

]
. (∗ ∗ ∗)

[10]

CONTINUE OVER...
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In linear perturbation theory, the source term S in this equation is zero.
Adopting S = 0 as an approximate non-linear model of structure formation,
show that (∗ ∗ ∗) requires that w remains constant along paths that follow the
fluid flow. Hence show that the fluid elements travel along straight lines

x = q +D(t)w,

where the components of q are constants. [3]

Discuss briefly whether this model provides an accurate description of the
non-linear evolution of structure in an expanding universe. [2]
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Question 4Y - Structure and Evolution of Stars

(i) Describe the most important features of the optical spectra of white
dwarfs, outlining the physical properties indicated by each spectral character-
istic. [7]

Briefly outline the spectral classification of white dwarfs. [1]

Explain in a few sentences why astronomers are interested in discovering
white dwarfs with low values of Teff . [2]

(ii) A white dwarf star may be modelled as an isothermal degenerate core
with temperature Tc, mass Mc, and molecular weight µc, which cools and loses
energy at a rate

L = −3

2

RMc

µc

dTc

dt
,

where R is the gas constant. This core is overlaid by a thin non-degenerate
envelope where the opacity κ follows Kramers’ law,

κ =
Aρ

T 3.5
,

where ρ is the mass density and A is a constant. The transition density from
core to envelope is given by ρt = CT

3/2
c , where C is a constant. Using equations

of stellar structure for the envelope, show that pressure and density in the
envelope are related by,

P ∝ ρ
n+1
n ,

with n = 3.25. [8]

Show further that the luminosity depends on the core temperature as L ∝
T 3.5

c . [3]

Show that the luminosity decreases with time as L ∝ t−1.4. [3]

Explain how you would verify empirically that the time dependence of the
luminosity derived above holds for real white dwarfs using a ground-based
telescope. [6]

TURN OVER...
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Question 5Y - Statistical Physics

(i) Consider a solid body with heat capacity at constant volume CV . As-
sume that the solid’s volume remains constant throughout Part (i) of this
question. If the temperature changes from Ti to Tf , show that the entropy
change is ∆S = Sf − Si = CV ln (Tf/Ti). [2]

Now consider that two identical such bodies (both with heat capacity CV )
with initial temperatures T1 and T2 are brought into equilibrium in a reversible
process. What are the final temperatures of the bodies? [4]

Now suppose that the two bodies are instead brought directly into ther-
mal contact (irreversibly). What are the final temperatures of the bodies?
Compute the entropy change and show that it is positive. [4]

(ii) State Carnot’s theorem. [2]

Consider two Carnot engines. The first operates between two heat reser-
voirs at temperatures T1 and T2 < T1. The second engine operates between two
heat reservoirs at temperatures T2 and T3 < T2. Show how Carnot’s theorem
can be used to define a thermodynamic temperature. [6]

Consider the Gibbs free energy, G = E + pV − TS, where E is energy, p is
pressure, V is volume and S is entropy. Explain why G = µ(T, p)N , where µ
is the chemical potential and N is the number of particles. [3]

What is a first-order phase transition? [2]

Consider a system at constant pressure where phase I is stable for T > T0

and phase II is stable for T < T0. Explain how in a transition from phase II
to phase I, SI − SII > 0, where SI is the entropy in phase I and SII is the
entropy in phase II. [7]

[Hint: Consider S = −
(
∂G
∂T

)
p,N

for each phase.]
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Question 6Y - Principles of Quantum Mechanics

(i) A particle of massm travels in one dimension subject to the Hamiltonian

H0 =
P 2

2m
− U δ(x) ,

where P is the momentum operator, U is a positive constant and δ(x) is the
Dirac delta function. Let |0〉 be the unique bound state of this potential and E0

its energy. Further, let |k,±〉 be unbound H0 eigenstates of even or odd parity,
each with energy Ek, chosen so that 〈k′,+|k,+〉 = 〈k′,−|k,−〉 = δ(k′ − k).
At times t ≤ 0 the particle is trapped in the potential well. From t = 0, it is
disturbed by a time-dependent potential. The perturbed Hamiltonian is then,

H = H0 + λv(x, t),

where v(x, t) = −Fx e−iωt and F > 0 and 0 < λ � 1 are constants. Subse-
quently, the particle’s state may be expressed as

|ψ(t)〉 = a(t) e−iE0t/~|0〉+

∫ ∞
0

(bk(t)|k,+〉+ ck(t)|k,−〉) e−iEkt/~ dk .

Show that

ȧ(t) e−iE0t/~|0〉+
∫ ∞

0

e−iEkt/~
(
ḃk(t)|k,+〉+ ċk(t)|k,−〉

)
dk =

iλF

~
e−iωt x|ψ(t)〉

for all t > 0. [5]

Show that bk(t) = 0, working to first order in λ. [5]

(ii) For the system in Part (i), and working to first order in λ, show that

ck(t) =
iλF

~
〈k,−|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
,

where Ωk = (Ek − E0 − ~ω)/~. [8]

CONTINUE OVER...
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The original bound state has position space wavefunction 〈x|0〉 =
√
K e−K|x|

where K = mU/~2, while the position space wavefunction of the odd parity
unbound state is 〈x|k,−〉 = sin(kx) /

√
π and its energy Ek = ~2k2/(2m).

Show that, at late times, the probability that the particle escapes from the
original potential well is

Pfree(t) =
8~λ2F 2t

mE2
0

√
Ef/|E0|

(1 + Ef/|E0|)4
,

to lowest order in λ, where Ef > 0 is the final energy. [12]

[You may assume that as t→∞, the function sin2(ηt)/(η2t)→ π δ(η).]
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Question 7Z - Stellar Dynamics and the Structure of Galaxies

(i) Starting from the collisionless Boltzmann equation

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0,

show that the first moment equation can be written in the form

∂

∂t
(νvj) +

∂

∂xi
(νvivj) + ν

∂Φ

∂xj
= 0,

where you should define ν, vj and vivj. [7]

If all the stars have mass m, write this equation in terms of the mass
density, ρ, and identify the physical meaning of each term in this equation. [3]

(ii) The distribution function for a spherically symmetric system is de-
scribed by

f = Fε−1/2,

where ε is the relative energy and F is a normalisation constant. Explain
(a) why this distribution function is a solution of the steady-state collisionless
Boltzmann equation, and (b) why it describes a system where the velocity
distribution is everywhere isotropic. [3]

Show that the stellar density ρ and the relative potential Ψ are related by
ρ ∝ Ψ. [3]

Derive the functional form for ρ(r) and show that the outer radius of the
cluster scales as F−1/2. [5]

Show that the mean square stellar speed is proportional to ρ. [3]

Sketch the form of the probability density function for the stellar speed at
a fixed location. [3]

Compare this with the corresponding probability density function for molec-
ular speeds within the analogous fluid system and comment on why these
distributions are not the same. [3]

[You may assume that for a spherically symmetric potential, Φ(r), the Lapla-
cian operator can be written

∇2Φ =
1

r

d2(rΦ)

dr2
. ]

TURN OVER...
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Question 8Z - Topics in Astrophysics

(i) A survey at a wavelength λ = 1.1 mm covering an area of A = 10 square
arcmin has detected a number of galaxies and measured their flux densities S
(in mJy) down to a limit of Slim = 100µJy. These detections have been used
to determine the number of galaxies per square degree with flux densities in
the range S to S+dS to be

n(S)dS = N0(S/S0)−αd(S/S0),

where N0 = 2700 deg−2, S0 = 2.6 mJy, and α = 1.81. Estimate how many
galaxies were detected. [5]

Estimate the flux density of the brightest galaxy that is likely to have been
detected in the survey. [2]

Comment on whether it is the brightest or faintest galaxies that contribute
most to the cosmic infrared background at this wavelength. [3]

(ii) Consider a disc of carbon monoxide (CO) gas around a star of mass M?

at a distance d from the Sun. The gas orbits at radii in the range Rin to Rout.
Observations of an optically thin CO emission line are made and the disc is
found to be both spatially and spectrally resolved. The image of the disc shows
its midplane to be edge-on to our line of sight. Construct a position-velocity
diagram in which the x-axis is the projected distance from the star along the
disc’s midplane as seen on the sky, and the y-axis is the radial velocity of the
gas relative to the star Vr. Sketch the region within which the gas emission
must lie, quantifying the locus of any boundaries. [8]

Describe how such a position-velocity diagram can be used to determine
the mass of the star, as well as the radial distribution of gas. [2]

The star undergoes a flare and it is suggested that the CO emission might
respond to this event leading to variability in the position-velocity diagram.
Quantify the time delay in the response expected as a function of Vr and x,
and sketch where the perturbation to the position-velocity diagram would be
expected at a time Rin/c after the flare is first detected for Rout/Rin = 3. [8]

Discuss some of the challenges with detecting the response to the flare in
this way. [2]

END OF PAPER
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