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ABSTRACT

We extract the resonant orbits from an N-body bar that is a good representation of the Milky
Way, using the method recently introduced by Molloy et al. (2015). By decomposing the bar into
its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape
of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape
towards the Galactic centre. The resonant orbits are shown to have distinct kinematic features and
may be used to explain the cold velocity peak seen in the APOGEE commissioning data (Nidever
et al. 2012). We show that high velocity peaks are a natural consequence of the motions of stars in
the 2:1 orbit family. The locations of the peaks vary with bar angle and, with the tacit assumption
that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks
correspond to bar angles in the range 10◦ < θbar < 25◦. However, some important questions about
the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the
deviations from symmetry between equivalent fields in the north and south.
Subject headings: Galaxy: kinematics and dynamics — Galaxy: evolution

1. INTRODUCTION

It is now widely accepted that the Milky Way (MW) hosts
a bar. Many methods have been used to map out the struc-
ture of the bar, such as IR photometry (Blitz & Spergel
1991; Dwek et al. 1995), gas dynamics (Englmaier & Ger-
hard 1999; Weiner & Sellwood 1999), star counts (López-
Corredoira et al. 2007; Robin et al. 2012), microlensing (Udal-
ski et al. 1994; Evans & Belokurov 2002; Wyrzykowski et al.
2015) and even the local kinematic landscape (Dehnen 1999,
2000). The MW bar exhibits a boxy-peanut shape (e.g., Dwek
et al. 1995), which is host to an X-shaped structure (Nataf
et al. 2010; Saito et al. 2011; Li & Shen 2012; Ness et al.
2012). The spatial density of the bar has been mapped out
most recently in red clump stars from OGLE-III and the VVV
data (e.g., Wegg & Gerhard 2013; Cao et al. 2013). However,
despite a number of radial velocity surveys toward the Galac-
tic bulge, kinematic substructure has rarely been observed.
This is a pity, as such substructure may betray evidence of
the processes that formed and shaped the bar. The Bulge
RAdial Velocity Assay (BRAVA; Rich et al. 2007) and GI-
RAFFE Inner Bulge Survey (GIBS; Zoccali et al. 2014) both
observed ∼10,000 giants over a large region of the bulge, but
revealed no signature of cold streams. The ARGOS survey
(see Ness & Freeman 2012; Ness et al. 2013) has also yet to
reveal evidence for streams in the bulge, although their ve-
locity distributions, cut according to metallicity, hint at the
wealth of information contained in the kinematic data.

Recently, however, a cold high velocity stream has been ob-
served by Nidever et al. (2012) in the Apache Point Observa-
tory Galactic Evolution Experiment (APOGEE) commission-

ing data. For certain fields towards the Galactic Bulge, they
find bimodal velocity distributions and identify cold (σ ∼ 20
km s−1) secondary peaks in the distribution of line of sight
velocities at vlos ∼ 200 km s−1. The independent observa-
tions of Babusiaux et al. (2014) also hint at the presence of
a high velocity peak, this time with red clump stars. The
origin, and even the existence, of this feature has been the
subject of recent debate (Li et al. 2014; Zoccali et al. 2014).
Li et al. (2014) found the absence of a statistically significant
cold high velocity peak in two N-body barred models. They
also showed that it is possible for a spurious high velocity peak
to appear if there are only a limited number of stars observed.
Here, we look at the matter anew, using novel algorithms to
extract nearly periodic orbits from bar simulations.

2. ORBITAL COMPONENTS IN THE BAR

In Molloy et al. (2015, hereafter M15), we introduced a
method to identify resonant orbits in N-body simulations,
and used it to provide a possible explanation for the bi-
modal velocity distributions observed towards the Galactic
anti-Centre. The same method is now applied to the inner
parts of a barred model of the Milky Way. Here, a cold but
thickened disc self-consistently develops a bar, which under-
goes a buckling instability to form a Bulge that is a good
match to that of the Milky Way (see Shen et al. 2010; Li
& Shen 2012). Resonant orbits can be characterized by the
fact that they close and return to a previously occupied lo-
cation in phase space in some rotating frame. The method
in M15 proceeds by recalculating the N-body orbits in many
different rotating frames. We define a metric Dps to measure
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Figure 1. The surface density in the x-y (top) and x-z (bottom)
planes for all (left) and 2:1 resonant orbits (right).

the distance each particle travels from some arbitrarily chosen
starting point in the rotating frame. If an orbit almost closes,
Dps should, at some point along its trajectory, be nearly zero.
By defining a cut-off, we can extract a sample of the nearly
closed orbits from the simulation. Resonant orbits can librate
about each family’s parent orbit, so by defining tighter and
tighter cuts on Dps, we can extract cleaner and cleaner sam-
ples of resonant orbits. The choice of cut on Dps is really set
by the problem in hand.

We make some minor modifications to the algorithm de-
scribed in M15. In bars, there are always some chaotic orbits,
especially near corotation. Chaotic orbits may return arbi-
trarily close to their chosen starting point over long timescales
(the Poincaré Recurrence Theorem), and can therefore be
mistaken as periodic. Previously, we measured the phase
space distance from a single point as the orbit proceeded on
its trajectory over ∼ 1 Gyr. Here, we define a time frame,
unique to each particle, over which we apply the phase space
distance method. For each particle, we measure the duration
it takes to complete eight radial oscillations. This ensures
that we have a long enough trajectory to extract high-order
periodic orbits while excluding chaotic orbits that rapidly ex-
plore their phase space volume. For orbits very close to the
centre, this time frame may be sampled by very few points so
we interpolate the trajectory.

Also, instead of measuring the phase space distance from
a single point, we find the time at which a particle reaches
its first apocentre, t0. As we scan different rotating frames
(between 37 ≤ Ωp ≤ 40 km/s/kpc), we extract sections of
the trajectories that lie in the range φ′(t0) to φ′(t0) + π/4,
where φ′ is the azimuthal angle in the rotating frame. This
gives us, say, n similar sections of the trajectory. If n is
less than three, then we increase the duration over which we
apply the method. The n = 1 section is the reference section
which we compare to following test sections. The phase space
distance Dps is measured between successive points on the
reference section and the test sections. We take the average
Dps between the orbit sections as a measure of how “closed”
the orbit is - the lower the value, the more closed the orbit.
Of the n − 1 Dps values, we take the minimum and in the
following we adopt a cut on the phase space distance of Dps <
0.06 (Over the course of an orbit Dps varies between 0 <

Dps <
√

2, see M15).
By extracting a sample of resonant orbits in the central

regions, we can deduce the contribution they make to the
structure of the bar. Figure 1 shows the normalized sur-
face density of the inner parts of the disc. In the left pan-
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Figure 2. Top: For convenience, we show the vlos distributions
taken from Nidever et al. (2012). Bottom: The vlos distributions
for the sample of 2:1 resonant orbits in each field, assuming a bar
angle of 15◦. We use a genetic algorithm to populate 3-Gaussian
mixture models for the data.

els, we show the x-y (top) and x-z (bottom) surface den-
sity for all of the particles in the simulation. The bar ex-
tends to ∼4 kpc or RCR/a ≈ 1.125 and has an axis ratio of
b/a ≈ 0.5. This is slightly less extended than the value of
0.35 found by OGLE (Rattenbury et al. 2007) but agrees well
with the structure derived recently from a large sample RR
Lyrae (Pietrukowicz et al. 2014). The x-z surface density ex-
hibits a strong boxy-peanut shape characteristic of buckled
bars. We extract the resonant 2:1 orbits by estimating the
azimuthal (Ω) and epicyclic (κ) frequencies for our sample of
closed orbits. For each orbit, we calculate q = (Ω − Ωp)/κ,
where Ωp is the pattern speed of the frame in which the or-
bit closes, or reaches its lowest Dps. We then extract the 2:1
orbits as those having 0.48 ≤ q ≤ 0.52. The surface densities
are shown in the right panels of Figure 1. It is clear that the
2:1 orbits generate the backbone of the bar. The buckling
instability has a noticeable effect on this family of orbits, in-
ducing a large vertical velocity dispersion for stars at the end
of the bar. The contribution of the 2:1 family to the boxy
and peanut shape is unmistakable.

3. VELOCITY DISTRIBUTIONS

The photometry and star counts for this model have already
been shown to be a good match to observations. Indeed, the
simulation was tailored to match the kinematics towards the
Galactic Bulge as seen by the BRAVA data (Shen et al. 2010).
Since we can deconstruct the bar into its different orbital fam-
ilies, we can now characterize the contribution of each family
to the velocity distributions. The APOGEE commissioning
data revealed cold high velocity peaks for a number of Bulge
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Figure 3. A schematic (and simplified) representation of a 2:1 bar orbit. The red arrows represent the motion of the particle in the frame
of the bar (the black dashed box). For different fields, represented by the blue dashed lines, it is clear that this type of orbit gives different
contributions to the line of sight velocities. For l > 0◦, we expect the star to be moving away, whilst the reverse is true for fields with
l < 0◦. Inset, top right: A sample orbit from a high velocity peak at (l, b) = (10, 0), the red triangles indicate the fields of view from
equivalent sides of the disc. The blue dots represent the preceding 100 timesteps of the orbit and the large blue cross, inside the field of
view, indicates the position of the particle when it has a high vlos (listed). Inset, bottom right: The density of the 2:1 resonant orbits
in the field at (l, b) = (10, 0) as a function of vlos and distance. The highest velocity particles lie at a distance of ∼ 8.5 kpc corresponding
to pericentric passage. The lowest velocity particles lie at a distance of ∼ 6 kpc corresponding to apocentric passage.

fields. Below we will show that that these peaks arise nat-
urally as a result of the motions of resonant bar orbits, in
particular, the 2:1 orbital family. We should note here that,
if we include all simulation particles in our line of sight ve-
locity distributions we recover the result of Li et al. (2014)
where no cold peaks are revealed.

To generate mock vlos distributions, we first fix some funda-
mental parameters. We choose the Solar radius as R� = 8.5
kpc and the circular velocity at R� as vc = 220 km s−1.
Varying these between reasonable values has only minor ef-
fects on the distributions. We assume an angle between the
long axis of the bar and the Solar–Galactic Centre (GC) line
of θbar = 15◦ (we later justify the choice, where we explore
a range of bar angles). We also limit the distances of the
particles to between 3 kpc and 9 kpc and, in order to in-
crease the numbers in the samples, we include particles from
equivalent positions on either side of the disc and increase
the diameter of the field by a factor of two compared to the
APOGEE fields. As a further measure to increase the number
of particles, we also average over 10 timesteps, making sure
to take into account the (small) change in bar angle between
timesteps.

The top panel of Figure 2 shows the kinematic data on
the APOGEE commissioning fields of Nidever et al. (2012),
together with their two Gaussian decomposition. In the bot-
tom plot of Figure 2, we show the velocity distributions for
our sample of 2:1 orbits. To avoid forcing fits to binned
data, we instead opt for a more general approach. We pop-
ulate Gaussian mixture models (GMMs) using a genetic al-
gorithm that converges on probability distribution functions

that could have produced the data1. This only requires one
to input the range of parameter space to explore. In order
to compare the fits across each field, we force the distribu-
tions to be fit with three Gaussians. Initially, we fit each of
the field’s distributions with one to five Gaussians. We then
performed likelihood ratio tests to see when adding an extra
Gaussian component made no significant improvement. Most
of the fields preferred either two (43.75%) or three (52.5%)
Gaussians, while only a small proportion preferred one Gaus-
sian (3.75%). Generally, the distributions are split into neg-
ative and positive velocity components, with an intermediate
component in some fields. We interpret the negative velocity
component as being due to particles on the near side of the
bar, streaming towards apocentre. The high velocity compo-
nent are then the particles streaming towards pericentre on
the far side of the bar, while the intermediate component rep-
resents the particles that are slowing down as they approach
apocentre, those at apocentre (with almost zero line-of-sight
velocity) and those leaving apocentre, speeding up as they
head towards pericentre. The shape, and number of compo-
nents in the distribution is a non-trivial function of the field
being observed, the chosen bar angle and the range of dis-
tances being sampled. For a selection of bar angles, we list
the values of the peaks of the distributions for each field in
Table 1. In the case of the three Gaussian fits to the 2:1
distributions, we list the highest valued peaks.

A crude representation of a 2:1 bar orbit is shown in Figure
3. The orbit, shown as the red arrows, reaches its apocentre

1We do this using the freely available SOLBER routines:
http://www.ast.cam.ac.uk/∼vasily/solber/
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Figure 4. For the APOGEE commissioning fields shown in Nidever et al. (2012), we use Gaussian mixture models to characterize the
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Figure 4). For each field, the high velocity peak from the APOGEE commissioning data is indicated by the blue horizontal line. A linear
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panel.

at each end of the bar (on the x-axis), while the pericen-
tres are located in the directions perpendicular to the bar
(the black dashed box). The black dot represents the posi-
tion of the Sun, so that the bar is rotating in a clockwise
direction and the Galactic Centre-Solar position line is at an
angle close to 20◦ with respect to the bar. The dashed blue
lines indicate the fields of view in Galactic coordinates. With
(l, b) = (10◦, 0◦), we can see how this type of orbit contributes
to a high velocity component in this direction. For this line-
of-sight, the measured vlos captures most of the components
of Galactocentric vR and vφ and results in the high velocity
peaks shown in Figure 2. In the Galactocentric frame, these
stars have vR < 0 km s−1 and vφ � 0 km s−1 which, for this
particular direction in relation to the Solar position, make
a significant contribution to vlos – in fact, almost all of the
particle’s velocity is coincident with the line of sight.

As a specific example, we take a sample orbit in the di-
rection of (l, b) = (10◦, 0◦) from the high velocity component
(vlos > 150 km s−1) in the velocity distributions assuming a
bar angle of 20◦. We plot the orbit in the upper right panel of
Figure 3 and indicate with the red lines the fields of view from
which our sample is derived. The orbits are plotted over a
period of ∼1 Gyr with the final 100 timesteps indicated with
blue crosses and the final timestep shown as the large blue

cross lying inside the field of view. The line of sight velocity,
assuming a Solar position of (x, y) = (8.5, 0), is also listed.

A population of circular orbits (if they exist in this region)
would make a similar, but smaller, contribution to the high
velocity peak in vlos since vR ≈ 0 km s−1. This direction
also captures stars that are just reaching their maximum ra-
dius and so contribute to the negative velocity component in
the distributions of vlos. The peaks of this component are at
a lower velocity compared to the simple disc rotation model.
This shows that resonant orbits in this direction imprint both
low and high velocity kinematic signatures on the line of sight
velocity distributions. A field centered on (l, b) = (0◦, 0◦)
passes through the whole structure of the bar and therefore
catches stars with a negative vlos on the near side and with
positive vlos on the far side. At negative l, the bar stars are
approaching the Solar position and so imprint a high nega-
tive velocity component, mirroring the corresponding fields at
positive l. Having a non-zero bar angle influences the differ-
ing shapes of the distributions between positive and negative
longitude fields.

The lower right panel of Figure 3 shows the density of par-
ticles as a function of vlos and distance. For the line of sight
(l, b) = (10◦, 0◦), particles that are reaching apocentre con-
tribute to the peak at ∼ 0 km s−1 and are at smaller distances
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Table 1
Line-of-sight velocity distributions.

(l,b) θbar All Peaka 2:1 Peakb

(◦) km s−1 km s−1

(10.0,-2.0)

10◦ 60.2 192.9
15◦ 55.2 192.4
20◦ 56.3 175.6
25◦ 51.9 180.9

(10.0,2.0)

10◦ 70.1 197.3
15◦ 64.7 193.9
20◦ 62.5 197.7
25◦ 56.3 183.9

(14.0,-2.0)

10◦ 82.0 149.0
15◦ 75.0 148.8
20◦ 66.8 143.8
25◦ 65.8 128.0

(14.0,2.0)

10◦ 87.1 147.6
15◦ 85.2 142.9
20◦ 78.8 141.5
25◦ 69.3 142.8

(4.0,0.0)

10◦ 47.0 217.8
15◦ 49.1 216.3
20◦ 44.2 220.0
25◦ 42.0 227.8

(4.3,-4.3)

10◦ 49.6 210.5
15◦ 43.0 227.9
20◦ 43.6 216.3
25◦ 41.1 203.9

(5.7,-2.0)

10◦ 59.3 201.0
15◦ 55.6 195.1
20◦ 54.5 176.7
25◦ 44.8 163.5

(6.0,0.0)

10◦ 56.7 242.9
15◦ 44.3 253.1
20◦ 47.8 232.2
25◦ 48.7 202.8

a χ2 fits to all particles in the field.
b Maximum peak of 3-Gaussian fit.

(∼6 kpc). As the distance is increased, the particle’s velocity
increases since both vφ and vR are increasing and also be-
cause the velocity vector is coincident with the line of sight.
The highest velocity particles are approaching their pericen-
tre occurring on the short axis of the bar at a distance of ∼8
kpc, very close to R�. This picture is consistent with our
interpretation of the high velocity peaks in Bulge fields being
due to the motions of resonant 2:1 bar orbits.

Can we use this insight to constrain the viewing angle of
the bar, using the information on how the velocity peaks vary
with Galactic position? In Figure 4, the black stars and dots
represent the locations of the peaks found by Nidever et al.
(2012). Overplotted as blue dots and red stars are the po-
sitions of the peaks from our models. Specifically, the blue
dots are derived from the Gaussian mixture models for the
2:1 resonant orbits, whilst the red stars are extracted from χ2

fits to all the particles in the field. It is clear that, although
no single choice of viewing angle reproduces all the data, the
trends in the velocity peaks are well-reproduced for bar angles
∼ 15◦.

The fields with the largest deviations are the ones with
the highest longitude, for which our simple picture probably
breaks down. Although the peaks in these fields are quite
pronounced, they systematically lie at lower values compared
to the data. This could be due to one of two possible scenar-
ios. Firstly, being at high longitudes, particles in these fields
feel a significant cumulative effect of the shallower potential.
The high velocity particles in fields with l ≥ 10◦ are at peri-
centre between 1.5 and 2.0 kpc along the short axis of the bar.
We expect the potential to be somewhat shallower since the
pure disc simulation is absent of a gaseous component and
live halo that may relax into a more concentrated configura-
tion after the formation of the bar. However, the simulation
has been shown to be in good agreement with the kinematics
observed by BRAVA Shen et al. (2010), even as far out as
l = 10◦. A good match is made to the mean velocities and

velocity dispersions, so that the comparison is made to the
data through the whole line of sight. As we’ve shown above
(Figure 3, bottom right), the high velocity peaks correspond
to a limited range in distance. That the deviation from the
observed peaks increases with l is another indication that a
somewhat shallow potential is the cause.

Another possible scenario is that the peaks are in fact
caused by another family of resonant orbits. We have checked
the other major families in the bar, the 3:1 and 5:2 families.
They do generate strong peaks in these fields but, as with
the 2:1 orbits, the high velocity peaks are at systematically
lower values (combinations of the 2:1, 3:1 and 5:2 orbits also
result in peaks with low values). However, other higher order
resonances may also be important in these regions. As men-
tioned in Nidever et al. (2012), the high velocity peaks are
unlikely to be due to tidal streams. Although the Sagittarius
stream lies close by on the plane of the sky, the high velocity
stars show no preference for magnitude or metallicity and, in
any case, the stream stars are not expected to appear in large
numbers (Law & Majewski 2010).

Another way of synthesizing this information is presented
in Figure 5, which shows how the location of the high veloc-
ity peak varies with assumed viewing angle of the bar. The
observational data for each field are represented by the hori-
zontal blue line, and suggest viewing angles between 10◦ and
25◦. Some scatter is expected, as the N-body model does
not exactly reproduce the three-dimensional density of the
inner Galaxy and the kinematical properties are subject to
numerical shot noise.

4. DISCUSSION AND CONCLUSIONS

We have shown that the high velocity peaks seen in
APOGEE commissioning data (Nidever et al. 2012) may be
explained by the presence of a large family of 2:1 resonant
orbits in the Galactic bar. These orbits are elongated along
the bar’s major axis, and must support the distended shape
of the bar to provide its backbone. When viewed at bar an-
gles in the range 10◦ < θbar < 25◦, the 2:1 orbits naturally
give rise to secondary peaks in the line of sight velocity dis-
tributions at vlos ∼ 200 km s−1. We have provide a pictorial
explanation of this phenomenon.

Our interpretation is open to the objection that the method
is not fully self-consistent. We have shown that the popu-
lation of 2:1 orbits can generate the kinematic features to
explain the data of Nidever et al. (2012), but we have al-
lowed the normalization of the density in these orbits to vary
independently of the N body model from which they were
extracted. This though is unlikely to be a serious concern,
as the range of self-consistent equilibria for bars is wide and
solutions will exist using different relative populations for the
orbital families that comprise the bar. As we have mentioned
above, the other resonant orbit families also produce rich
structure in their velocity distributions. If we combine the
2:1, 3:1 and 5:2 orbits in our distributions, the high velocity
peaks (which are somewhat more obscured) are dominated
by the 2:1 orbits and so follow the trends outlined above to
suggest θbar ≈ 15◦.

Another important consideration is the range of distances
probed by observations. Given the non-uniform distribution
of dust towards the Galactic Bulge, it is certain that differ-
ent fields are reaching different distances. Indeed the range
of distances reached may vary significantly through just one
field. The lower right panel of Figure 3 shows that the high-
est velocity stars are placed at a distance close to R�. It is
clear then that distance has an important role in shaping the
velocity distributions.

Some issues remain about the high velocity peaks. The first
is why symmetry is not seen between positive and negative
latitude fields. Peaks are observed in the field at (4.3,-4.3)
but not in the field at (4.3,4.3), the same goes for the fields
at (5.7,-2) and (5.7,2). The obvious explanation for such a
difference is that the distances being probed differs between
north and south. It is known that extinction in the north is
greater than in the south (Gonzalez et al. 2012), which offers
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a possible explanation for the disparity. However, according
to APOGEE estimates, although the average extinction is
indeed greater for the field at (4.3,4.3) than for the field at
(4.3,-4.3), the opposite is the case for the fields at (5.7,2)
and (5.7,-2). Another point to consider is that in the plane,
where extinction is highest, strong peaks are seen. A possible
explanation here is that the number density of bar supporting
orbits is higher in these regions. In any case, the extinction
data is at its most uncertain in the plane of the disc, making
the previous suggestions purely speculative.

The second major concern is the differences between differ-
ent Bulge surveys. The BRAVA, ARGOS and GIBS surveys
don’t report the detection of cold streams in the Bulge. The
presence of the peaks in the APOGEE data should be reso-
lutely confirmed on analysis of the post–commissioning data.
That the cold peaks are seen in one survey and not the oth-
ers provides a possible clue as to the nature of bar supporting
orbits. The clue lies in the different observing strategies and
selection functions for the data. The color selections are simi-
lar, with each survey using cuts on J−K color, but the mag-
nitude ranges are not the same. These surveys each cover
different footprints (with only APOGEE and GIBS observ-
ing a significant number of fields below |l| = 4◦), and also
observe different types of stars (GIBS & ARGOS: mainly
red clump; APOGEE & BRAVA: mainly M-giants). Since
the targets that make up each survey differ in spatial (sur-
vey footprint, distance), temporal (ages) and chemical (color,
magnitude) attributes, the question of why cold streams are
seen in one survey and not others is certainly challenging (it
should also be noted that the observing strategy may be se-
lecting stars with a low velocity dispersion, thereby thinning
the overall distributions to reveal the cold peak). A better
question might be whether APOGEE has stumbled on a se-
lection strategy that preferentially selects bar stars, and if so,
can the strategy be shown to be consistent with chemical and
dynamical models of the Galactic Bulge?
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