1. Show that the mean of a distribution minimises

$$
<\left(x_{i}-\hat{x}\right)^{2}>_{i}=\int(x-\hat{x})^{2} P(x) \cdot d x
$$

and that the median of a distribution minimises

$$
<\left|x_{i}-\hat{x}\right|>_{i}=\int|x-\hat{x}| P(x) \cdot d x
$$

2. In estimating the scatter or spread in a distribution why does the modulus $=\langle | x-\mu \mid>$ always lead to lower value than the $r m s=\sqrt{\left\langle(x-\mu)^{2}\right\rangle}$. Hint: start from the definition of the two measures and use Schwarz's inequality.
3. For a Gaussian distribution what is the relationship between the modulus, FWHM and MAD measures of the scatter and the more conventional $r m s$ (sigma).
4. Two astronomical groups claim independent unbiased estimates of the Hubble constant of 80 ± 15 and 60 ± 10. Combining the two measures, what is the updated best estimate and error. Assume that both error estimates satisfy Gaussian distributions.

Hint: one possibility is to use Bayes' theorem treating one of the measurements as prior knowledge.

If the measurements to be combined were instead 100 ± 15 and 40 ± 10 How would you interpret your result.

