"THE ONLY UNIFORM DETECTOR IS A DEAD ONE"

- Bias frames - zero-point, fixed pattern, overscans, trimming
- Dark current - temperature sensitivity, cosmic ray characterisation
- Flat fields - pixel-to-pixel, large scale, dust...., dome flats, twilight sky flats, superflats from targets
- Illumination correction - scattered light in flats causes residual spatial sensitivity variations
- Fringing - wavelength, spatial and temporal dependence
$=$ problem only in the $\mathrm{R}, \mathrm{I}, \mathrm{i}$ ' and z passbands
- Cosmic rays - how to remove ? ignore ?
- NIR sky correction - sky is both spatially and temporally variable in NIR requires extra estimation and correction step cf. to optical
- Other problems - hot spots, traps, dead pixels/columns, saturation, video pattern noise, CTE and smearing, deferred charge field distortion, cross-talk
- Combining frames - common theme above and for targets too

STAGES IN CCD DATA PROCESSING

Following Gullixson:

$$
\text { raw }=(o b j+s k y \times(1+\text { fringe })) \times q e+d a r k+\text { flash }- \text { skim }+ \text { bias }
$$

Correction for Zero exposure Additive Spatial Systematics

$$
\begin{gathered}
<\text { dark }>=\text { dark }+ \text { flash }- \text { skim }+ \text { bias } \\
<\text { skim }>=\text { flash }- \text { skim }+ \text { bias } \\
<\text { bias }>=\text { bias }
\end{gathered}
$$

overscan region to monitor and remove variations in bias DC level.

$$
\text { raw }-<\ldots .>-(\text { ovscn }-<\text { ovscn }>)=(\text { obj }+ \text { sky } \times(1+\text { fringe })) \times q e
$$

Correction for Multiplicative Spatial Systematics - flat fielding

$$
\begin{gathered}
<\text { flat }>=q e+\text { dark }+ \text { flash }- \text { skim }+ \text { bias } \\
\text { const } \times \frac{\text { raw }-<\ldots>}{<\text { flat }>-<\ldots .>}=\text { obj }+ \text { sky } \times(1+\text { fringe })
\end{gathered}
$$

Correction for Additive Spatial Systematics - shift and stare

$$
<s k y>=s k y \times(1+\text { fringe })
$$

Register individual frames (-geometric distortion) and Combine

$$
x^{\prime}=a . x+b . y+c ; \quad y^{\prime}=d . x+e . y+f
$$

IMAGE DETECTION AND PARAMETERISATION

SKY ESTIMATION

- partition the field into background regions
- build up the 2 d array of background values
- or use annulus around chosen image
- random error is roughly $\sigma_{s k y} / \sqrt{N_{\text {sky pix }}}$
size chosen as compromise between small enough to follow variation in the background, but large enough to give a small error on the background
- form the histogram of pixel values in the region
- mean is badly biased
- median is better but still biased
- fit a Gaussian to the central peak - better still
- model the skewness (Bijaoui 1980) - stability ?
- NIR - much more difficult for several reasons - principle is the same
- sky varies a lot more on short time-scales \rightarrow need sky subtraction

IMAGE IDENTIFICATION

MATCHED FILTERS

a matched filter maximises the resultant peak signal:to:rms noise.
eg. for a two-dimensional target profile $I=I_{p} \cdot \exp \left(-r^{2} / \sigma^{2}\right)$

IMAGE DETECTION FILTERS

using a normalised detection filter as $I=\exp \left(-r^{2} / \sigma_{g}^{2}\right) / \pi \sigma_{g}^{2}$ changes the peak intensity, $I_{p} \rightarrow I_{p} \div\left(1+\frac{\sigma_{g}^{2}}{\sigma^{2}}\right)$, and changes the noise,
$<\epsilon^{2}>^{\frac{1}{2}} \rightarrow<\epsilon^{2}>^{\frac{1}{2}} \div \sqrt{2 \pi \sigma_{g}^{2}}$.
for a normalised circular top-hat filters of radius, a, the improvement becomes $\sqrt{\pi a^{2}} \times \sigma^{2} / a^{2} \times\left[1-\exp \left(-a^{2} / \sigma^{2}\right)\right]$.

IMAGE PARAMETERS

Isophotal Intensity:

$$
I_{i s o}=\sum_{i} I\left(x_{i}, y_{i}\right)
$$

Position:

$$
\begin{aligned}
x_{o} & =\sum_{i} x_{i} \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right) \\
y_{o} & =\sum_{i} y_{i} \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right)
\end{aligned}
$$

Covariance Matrix:

$$
\begin{gathered}
\sigma_{x x}=\sum_{i}\left(x_{i}-x_{o}\right)^{2} I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right) \\
\sigma_{x y}=\sum_{i}\left(x_{i}-x_{o}\right) \cdot\left(y_{i}-y_{o}\right) \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right) \\
\sigma_{y y}=\sum_{i}\left(y_{i}-y_{o}\right)^{2} I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right)
\end{gathered}
$$

Areal Profile:
Area of image at levels $\rightarrow T+p_{1}, T+p_{2}, T+p_{3}, \ldots \ldots . T+p_{8}$
Peak Height:

$$
I_{p}=\max \left[I\left(x_{i}, y_{i}\right)\right]_{i}
$$

Kron:

$$
r_{1}=\int r . I(r) d r / \int I(r) d r ; r_{-2}=\int r^{-2} I(r) d r / \int I(r) d r
$$

OBJECT PARAMETER ESTIMATION

PHOTOMETRY

isophotal - the integrated flux within the boundary defined by the threshold level; ie. 0th moment

$$
I_{i s o}=\sum_{i} I\left(x_{i}, y_{i}\right)
$$

For Gaussian images, $I_{\text {tot }}=I_{\text {iso }} /\left(1-I_{t} / I_{p}\right)^{-1}$, where I_{p} is the peak flux and I_{t} the threshold relative to sky
for images close to the detection limit, $I_{p} \approx 2 I_{t}$, isophotal magnitudes will be around 1 magnitude fainter than total magnitudes.
aperture - the integrated flux within some radius r

$$
I_{a p}(r)=\sum_{i}^{N} I_{i}-N \times s k y
$$

depends critically on the sky estimate
the radius r is chosen as a compromise between: capturing all the light, and adding in too much sky noise $=\sqrt{N} \times \sigma_{s k y}$;
and being mislead by systematic errors in the sky level $=N \times \Delta_{s k y}$. use the curve-of-growth, $I_{a p}(r)$-v- r,
profile fitting - only possible for stars, requires point source psf
for a single image it reduces to a weighted sum over pixels vital when the image is a blend of several components

POSITION

2D isophotal centre of gravity

$$
\begin{aligned}
& x_{o}=\sum_{i} x_{i} . I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right) \\
& y_{o}=\sum_{i} y_{i} \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right)
\end{aligned}
$$

1D marginal profile method
form $\rho\left(x_{i}\right)=\sum_{j=-a}^{j=+a} I_{i, j}$ and equivalently $\rho\left(y_{i}\right)$
then find the centre of the one-dimensional distributions
simple and fast, usually not so good as using the full 2-d information,
PSF fitting and general weighted 2-d centre of gravity estimates

$$
\bar{x}=\frac{\sum_{i} w_{i} \times x_{i} \times I_{i}}{\sum_{i} w_{i} \times I_{i}}
$$

for an image profile $\phi(x, y)$, the optimum weight function is

$$
w_{i}=\left[\frac{1}{x-\bar{x}} \times \frac{\partial \phi}{\partial x}\right]_{i} \times \frac{1}{\sigma_{i}^{2}}
$$

for a Gaussian this reduces to $w_{i} \propto \phi\left(x_{i}, y_{i}\right) / \sigma_{i}^{2}$
requires an iterative solution

SHAPE

the Covariance Matrix is the triad of intensity-weighted 2nd moments and is used to estimate the eccentricity/ellipticity, position angle and intensityweighted size of an image

$$
\begin{gathered}
\sigma_{x x}=\sum_{i}\left(x_{i}-x_{o}\right)^{2} \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right) \\
\sigma_{x y}=\sum_{i}\left(x_{i}-x_{o}\right) \cdot\left(y_{i}-y_{o}\right) \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right) \\
\sigma_{y y}=\sum_{i}\left(y_{i}-y_{o}\right)^{2} \cdot I\left(x_{i}, y_{i}\right) / \sum_{i} I\left(x_{i}, y_{i}\right)
\end{gathered}
$$

for elliptical Gaussian function these are related to the size, eccentricity, and position angle as follows
the scale size, $\sqrt{\sigma_{r r}}=\sqrt{\sigma_{x x}+\sigma_{y y}}$
the eccentricity, ecc $=\sqrt{\left(\sigma_{x x}-\sigma_{y y}\right)^{2}+4 \cdot \sigma_{x y}^{2}} / \sigma_{r r}$
the position angle, θ is defined by, $\tan (2 \theta)=2 \cdot \sigma_{x y} /\left(\sigma_{y y}-\sigma_{x x}\right)$.
Higher order moments have been used as shape descriptors but are generally much more prone to corruption by outlying noisy data pixels.

