
MALMQUIST BIAS

(also known as Eddington bias)

...... or Eddington’s solution of Fredholm’s integral equation of 1st kind

F (x) =
∫

U(x − z) K(z) dz

Expand the LH integral argument to give

U(x − z) = U(x) − U ′(x) z + U ′′(x)
z2

2!
− ......

Integrate term by term

F (x) =
∑

n

µn

n!
U (n)(x)(−1)n

where µn are moments of integration kernel K. Now rewrite

U(x) = F (x) +
∑

n
AnF

(n)(x)

For a central Kernel (ie. µ1 = 0) and equating coefficients

U(x) = F (x) − µ2

2!
F (2)(x) +

µ3

3!
F (3)(x) −





µ4

4!
−
(

µ2

2!

)2


F (4)(x) + ......

For a Gaussian kernel µodd = 0, µ2 = σ2, µ4 = 3σ4, ...... therefore

U(x) = F (x) − σ2

2
F (2)(x) +

σ4

8
F (4)(x) + ......

and for say a luminosity function of the form eg. N(m) = 10α(m−mo)

dN

dm
= ln10 α N(m)

d2N

dm2
= (ln10)2 α2 N(m)

Nobs(m) = N(m)+
σ2

2
(ln10)2 α2 N(m) equivalently ∆m = −ln10 α

σ2

2



PRINCIPAL COMPONENTS ANALYSIS - PCA

Given a series of n-dimensional vectors xk; k = 1, 2, .....m what is the optimal

linear transformation to reduce the dimensionality of the data ? Define

x′
k = xk− < xk >k x′

k =
p
∑

j=1

akjψj + εj

where < ετ
k εk >k is to be minimised subject to |ψj|2 = 1

⇒ ψτ
jψk = δjk and

1

m

∑

jk

a2
jk maximised

⇒ akj = ψτ
j x′

k and
1

m

∑

jk

a2
kj =

∑

j

ψτ
j C ψj

where C = 1
m

∑m
k=1 x′

kx
′τ
k ie. C is symmetric and +ve definite.

⇒ C ψj = λjψj and
1

m

∑

jk

a2
jk =

p
∑

j=1

λj

Therefore sorting the eigenvectors of the data covariance matrix by eigenvalue

defines the optimum compression/feature extraction scheme.



INDEPENDENT COMPONENT ANALYSIS - ICA

This is an alternative approach for identifying independent features (compo-

nents) in the data but this time defined by the requirement that they are as

statistically independent as possible. (ICA is closely related to blind source

separation and projection pursuit.)

Start again from series of n-dimensional vectors xk, k = 1, 2, .....m and

define

x′
k = xk− < xk >k x′

k =
m
∑

j=1

akj sj

where sj are the sought after independent components. Defining X and S

as the matrices with column vectors xk, sk respectively and A as the matrix

with elements akj we have

X = A S S = A−1 X S = W X

where the weight matrix W defines the independent components.

Independence already implies uncorrelated but ICA also aims to maximise

the non-Gaussianity of the sk, which is equivalent to minimising the entropy

of the distribution of the values of the components of sk, which in this case

is also equivalent to minimising the mutual information of the vectors sk.

The simplest algorithm is FastICA which solves for sk one at a time using

a fixed point iteration scheme (Hyvärinen & Oja 1997).

sk =
m
∑

j=1

wkj xj = wτ
k X

which in practice is done by minimising < G(wτ
k X) > subject to wτ

k wk = 1

where G(u) = tanh(u) !!



ARTIFICIAL NEURAL NETWORKS - ANNs

Used for feature extraction, classification, data compression, prediction .....

Input layer: x{1 → m}; hidden layer(s): X{1 → h}; output layer: y{1 → p}

yk = fk(
h
∑

i=1

wki Xi + wk0) eg. f(z) =
1

1 + e−z
sigmoid

Xk = gk(
m
∑

i=1

w′
ki xi + w′

k0) f(z) = g(z) common

minimise <
∑

i

[yi(t) − di(t)]
2 >t

where t denotes training set and di(t) desired outcome.

Solution → back propagation of errors (Werbos 1974)

output units εj = (dj − yj) yj (1 − yj) (sigmoid function)

hidden units ε′j = yj (1 − yj)
∑

k

wjk εk

adjust weights iteratively ∆w(t)ij = η εj yi + α ∆w(t − 1)ij

loop through entire training set → nloop >> 1.



GENETIC ALGORITHMS

Generally used for NP hard problems ie. 6= N 2, NlnN, N 3 .......

but more of the variety, no. of solutions = N !, NM ....... ie. solution space

is combinatorial or has complex topology.

Examples include: scheduling timetables, airline routes, travelling salesman-

type problems, fiber configuration, χ2 template minimisation ......

1. devise gene-like encoding scheme for parameters of interest (Ngene)

2. randomly generate large nos. of trial solutions (eg. Ntrial = 1000+)

3. devise a fitness score (0–1) to quantify them (eg. constraints, χ2)

4. breed new offspring solutions ∝ fitness Pcrossover = 0.5 − 1.0, Pwhere

5. allow “genetic” mutations in offspring Pmutate ≈ 1
NtrialNgene

6. test new generation and rescale fitness score to range 0–1

7. test convergence, end, or repeat from 4.



OUTLINE PROOF – MAXIMUM LIKELIHOOD METHOD

The likelihood is the probability of observing a particular dataset, therefore

∫

L(x | θ) dx = 1

differentiate with respect to θ

∫ ∂L

∂θ
dx = 0 =

∫ 1

L

∂L

∂θ
.L dx =

∫ ∂ln(L)

∂θ
.L dx

differentiate RH term with respect to θ again

∫ ∂2ln(L)

∂θ2
.L +





∂ln(L)

∂θ





2

.L dx = 0

therefore
〈

− ∂2ln(L)

∂θ2

〉

=

〈





∂ln(L)

∂θ





2 〉

Let t be an unbiased estimator of some function of θ, say τ(θ), then

< t > =
∫

t L dx = τ(θ)

τ ′(θ) =
∂τ(θ)

∂θ
=

∫

t
∂ln(L)

∂θ
L dx

therefore from above

τ ′(θ) =
∫

(t − τ(θ))
∂ln(L)

∂θ
L dx

Use Schwarz inequality on τ ′ 2 to generate

τ ′ 2 ≤
∫

(t − τ)2 L dx ×
∫





∂ln(L)

∂θ





2

L dx

Therefore, for the case τ(θ) = θ

var{t} ≥ 1
〈

(

∂ln(L)
∂θ

)2
〉 =

1
〈

− ∂2ln(L)
∂θ2

〉



WORKED EXAMPLES

What are the correct ±1-σ error bars to use for a Poisson distribution eg.

number density of objects in various parameter ranges ?

Observe N objects in the interval ∆Ω consider the MLE of the model density

parameter φ.

Poisson = P (N |φ) =
(φ∆Ω)N

N !
e−φ∆Ω

lnL(φ) = −φ∆Ω + N ln(φ∆Ω) − lnN ! ⇒ φ̂ =
N

∆Ω

Error on estimate ±pσ when lnL = lnLmax − 1
2 × p2, substitute for φ̂

lnL(φ) = −φ

φ̂
N + N ln(

φ

φ̂
N) − lnN !

1 +
p2

2N
=

φ

φ̂
− ln(

φ

φ̂
)

For N = 1 the 1-σ range is 0.3 < φ/φ̂ < 2.4

In the limit of large N let φ/φ̂ = 1 + ε, then

1 +
1

2N
= 1 +

ε2

2
− ε3

3
+ ......... ⇒ Lim N→∞ ε = ± 1√

N



What is the optimum aperture to use for photometry of radially symmetric

Gaussian, Exponential and Moffat profile images ?

Gaussian = I(r) =
Itot

2πσ2
G

e−r2/2σ2

G FWHM = 2σG

√

2ln(2)

I(< R) = Itot (1 − e−R2/2σ2

G) MV B =
√

4πσ2
G σnoise

Efficiency =

√

√

√

√

4σ2
G

R2
(1 − e−R2/2σ2

G)

Exponential = I(r) =
Itot

2πa2
e−r/a FWHM = 2a ln(2)

I(< R) = Itot (1 − e−R/a − R/ae−R/a) MV B =
√

8πa2 σnoise

Efficiency =

√

√

√

√

8a

R2
(1 − e−R/a[1 + r/a])

Moffat = I(r) = Io [1 + (r/α)2]−β FWHM = 2α
√

21/β − 1

I(< R) =
πα2

β − 1
Io {1− [1+(R/α)2]−β+1} MV B =

√

√

√

√

√

πα2(2β − 1)

(β − 1)2
σnoise

Efficiency =

√

√

√

√

√

α2(2β − 1)

R2(β − 1)2
{1 − [1 + (R/α)2]−β+1}


