
TESTS FREE OF BINNING

Test hypothesis H0 that a series of observations {xi} have been drawn from

a population with a given cumulative distribution F (x). Pdf of the sample

is F ∗(x) = ν/n where ν is number of sample values ≤ x.

Smirnov-Cramer-von Mises test considers

w2 =
∫ ∞

−∞
[F ∗(x) − F (x)]2 dF (x)

Frequency ratio F ∗(x) satifies < F ∗ >= F and < (F ∗−F )2 >= F (1−F )/N

< w2 >=
1

6N
var{w2} =

4N − 3

180N 3

ie. the distribution of w2 is independent of F.

Kolmogorov- Smirnov test considers maximum deviation of F ∗(x) from F (x)

DN = max | F ∗(x) − F (x) | x

or maximum ± deviation

limN→∞ P (
√

NDN > z) = 2
∞
∑

r=1

(−1)r−1exp(−2r2z2)

For small N known tabulated distribution independent of F .

For comparing two distributions M, N observations

DMN = max | F ∗
1 (x) − F ∗

2 (x) | x

√

√

√

√

MN

M + N
DMN



MANN–WHITNEY U TEST (WILCOXON)

Powerful non-parametric test to decide if pairs of observations

{xi}, i = 1, 2, ....m {yi}, i = 1, 2, ....n

are drawn from same population.

H0: samples X, Y are drawn from same distribution; H1: X is stochastically

larger than Y , ie. directional hypothesis.

Order the observations x1, x2, y1, x3, y2.............xm, yn

assign running rank 1 2 3 4 j m+n

Construct the test statistic, U

U = mn +
m(m + 1)

2
− ∑

j ε m

j

or = mn +
n(n + 1)

2
− ∑

j ε n

j

For m, n ∼< 20 use Tables to look up exact distribution, otherwise for large

m, n

P (U) = N(µ, σ2) z =
U − µ

σ

µ =
mn

2

σ2 =
mn(m + n + 1)

12

For example: U test is 95% efficiency of T test for comparing means of two

Gaussian distributions.



BAYES THEOREM & OCCAM’S RAZOR

Bayesian viewpoint of parameter estimation for a particular hypothesis/model

P (θ |data, M) =
P (data |θ, M) P (θ|M)

∫

P (data |θ, M) P (θ|M) dθ

where the term in the denominator is known as the Bayesian evidence.

Now consider a Bayesian view of testing different models M1, M2

P (M1 |data) =
P (data |M1) P (M1)

P (data)

P (M2 |data) =
P (data |M2) P (M2)

P (data)

P (M1 |data)

P (M2 |data)
≥ Cα ≡ P (data |M1) P (M1)

P (data |M2) P (M2)
≡ P (data, M1)

P (data, M2)

The key feature here is the combination of the ratio of the global likelihoods

of the models (Bayes factor) and the ratio of the model prior odds (the last

part of the RHS is the ratio of joint PDFs of data and model).

The global likelihood of the model is given by

P (data |M) =
∫

P (data |θ, M) P (θ|M)dθ

which is none other than the Bayesian Evidence i.e. the average of the

likelihood weighted by the model parameters prior PDF.

If the model priors favours neither M1 nor M2 then Bayesian hypothesis/model

reduces to examining the ratio of the global likelihoods.

Note that this likelihood ratio favours simpler hypotheses since in general

they will make a more precise prediction as P (data |θ, M) P (θ|M) is not so

spread out over parameter space ⇒ Occam’s Razor.



DIGITAL FILTERING

Aim: reduce “noise” and keep signal ≈ same

Linear filters L̂(A + B) = L̂(A) + L̂(B)

Non-recursive filters take the form yl =
∑

k akxl−k

Recursive filters feedback the previous output yl =
∑

j bjyl−j and in 1-D are

causal if j > 0.

yl =
∑

k

ak xl−k +
∑

j

bj yl−j Y (ω) =
A(ω) X(ω)

1 − B(ω)

For non-recursive filters (common) constraint
∑

k ak = 1

⇒ constant signal level and a random noise reduction of
∑

k a2
k

In 1-D timeseries analysis z-transforms are used to design and implement

digital filters – z is a complex variable

S(z) =
∑

k

skz
k sk =

∮

c
S(z)z−k−1dz

ARMA (AutoRegressive Moving Average) process is most popular

1-D model eg. modelling speech, linear prediction, properties →

Y (z) =
A(z)

1 − B(z)
X(z) =

∏

k(z − Ak)
∏

j(z − Bj)
X(z)



WIENER FILTERING

Observed data d(x) = s(x) + n(x) ie. signal plus random noise component.

In Fourier domain D(w) = S(w) + N(w).

Is there a “best” linear filter such that Y (w) = H(w) D(w) is optimal ?

In data domain y(x) = h(x)
⊗

d(x) and usually h(x) symmetric about x = 0

⇒ no shift and H(w) real.

minimise < [s(x) − h(x)
⊗

d(x)]2 > < [S(w) − H(w)D(w)]2 >

Ĥ(w) =
< |S(w)|2 >

< |D(w)|2 >
=

< |S(w)|2 >

< |S(w)|2 + |N(w)|2 >

Generalise to a deconvolution problem and ask the same question.

d(x) = s(x)
⊗

b(x) + n(x) D(w) = S(w)B(w) + N(w)

where b(x) is the blurring function. The solution is

Ĥ(w) =
B∗(w) < |S(w)|2 >

|B(w)|2 < |S(w)|2 + λ|N(w)|2 >

A parametric Wiener filter, λ, derived from a constraint on the variance of

the output. Note that for zero-noise Ĥ(w) = B−1(w) the Inverse filter.



ENTROPY AS A MEASURE OF INFORMATION

Shannon & Weaver (The Mathmatical Theory of Communication – 1949)

introduced the concept of entropy as a measure of information.

Given a signal source with N possible outputs probability Pi define the in-

formation gain ∆Ii = h(Pi) as a monotonically decreasing function of Pi

∆Ii,j = h(Pi) + h(Pj) = h(PiPj) ⇒ ∆Ii = −lnPi

Hence the average or expected information is

< ∆Ii >= H = −
N
∑

i=1

Pi lnPi

The entropy H ≡ average a priori uncertainty regarding the source and is a

measure of the channel capacity.

Jaynes (1957) → entropy as a measure of randomness of distribution cf.

statistical thermodynamics.

H = −
N
∑

i=1

Pi lnPi H = −
∫

P (x) lnP (x) dx

Maximum Entropy Principle: choose PDF with maximum entropy subject

to whatever constraints apply.



Example I – Dice problem

H = −
6

∑

i=1

Pi lnPi constraints
∑

i

Pi = 1 ;
∑

i

i Pi = 2

max H ⇒ Pj =
e−jλ

z
; z =

∑

j

e−jλ

NB. constraint recovered by −∂lnz/∂λ = 2 =
∑

j j Pj

P1 P2 P3 P4 P5 P6

0.51 0.25 0.13 0.06 0.03 0.02

Example II – Gaussian Distribution

Series of constraints of the form < fk(x) > for k = 1, 2, .....m

Maximum Entropy solution defined by

P (x) =
e−

∑

k
fk(x)λk

z
z =

∫ ∞

−∞
e−

∑

k
fk(x)λk dx

< fk(x) > = − ∂

∂λk
lnz(λ1, λ2, .....λm)

Eg. constraints < x >= µ and < x2 >= µ2 + σ2

P (x) =
e−λ1x−λ2x

2

z
→ Gaussian

Hmax =
1

2
+ ln

√
2πσ2



IMAGE RESTORATION

Problem:- estimate underlying image pixel intensities (ie. parameters θi) from

observations {di, i = 1, 2, .....n} in the presence of various types of image

degradation (eg. blurring
⊗

b) and additive “measurement” noise εi

di = f(θ) + εi eg. di = θi

⊗

b + εi

Considering the distribution of pixel intensity parameters θi as equivalent to

state space variables in statisical thermodynamics suggests

maximise entropy = −∑

i

θi ln θi ⇐ ∑

i

θi = total f lux;
∑

i

χ2 = N

Surprisingly ∂/∂θj yields a simple iterative MaxEnt scheme

θj = exp {λ b
⊗

[dj − θj

⊗

b]}

From a Bayesian viewpoint image restoration translates to maximising

P (θ, M |D) = P (D|θ, M) P (θ|M) P (M) / P (D)

with respect to model M with parameters θ.

P (D|θ, M) is usually taken as the GoF measure χ2 and the prior

P (θ|M) =
N !

mN ∏m
i=1 θi!

= eαS

where m is the no. of parameters “pixels” and N total counts for image.

Note that for θi large (usually the case) using Stirling’s approximation gives

ln P (θ|M) = ln N !−N ln m−∑

i

ln θi! = const−∑

i

θi ln θi ⇒ S = entropy

and ignoring constants the MAP estimator is equivalent to maximising

MAP = e−χ2/2 eαs


