
MAXIMUM LIKELIHOOD METHOD I

Maximise the likelihood, P (data | model + parameters), which if adopt

Bayesian philosophy is the same as maximising the posterior probability,

P (model + parameters | data).

1. Use all the raw data if possible

2. Do minimal preprocessing eg. cosmic rays

3. Use MLM to devise optimal solution(s) to the problem

4. Tradeoff optimum method -v- practicalities eg. stacking images

5. Generate error estimates - Minimum Variance Bound (MVB)

P (parameters | data) ∝ P (data | parameters)

L = P (x1, x2, x3.....xn) =
n

∏

i=1

P (datai | parameters)

the latter for independent data points. In practice maximise

ln(L) =
n

∑

i=1

ln[P (datai | parameters)]

either by direct space searches or by solving (non-linear) equations

∂ln(L)

∂θj

= 0 ; j = 1, 2, 3.......m



MAXIMUM LIKELIHOOD METHOD II

Desirable properties of estimators

1. Consistency – θ̂ → θtrue as n → ∞

2. Unbiased – < θ̂ >= θtrue

3. Robustness – to real noise and imperfect model

4. Information content – make maximal use of information

Fisher information

1. Information should increase with no. of relevant observations

2. Information conditional on what we want from data

3. Information should be related to precision

Information matrix

I(θ)i,j =
∫ ∂ln(L)

∂θi

∂ln(L)

∂θj

L(x | θ) dx

= −
∫ ∂2ln(L)

∂θi∂θj

L(x | θ) dx

Parameter covariance matrix

V (θ)i,j ≥ I−1(θ)i,j

MVB, Cramer–Rao bound



PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

• of all estimators MLE’s are generally the ones with minimum parameter

error

• in general if you use a MLE no other method can improve upon the

estimate

• if the error or residual function is Gaussian MLE and non-linear least

squares estimates are the same

• almost all data processing problems admit a ML solution that is rela-

tively straightforward to implement numerically

• analysis of the parameter covariance matrix, or equivalently the Fisher

information matrix, can indicate whether or not you have too many

parameters, or have chosen the wrong parameters/model

• in model fitting problems always examine the residual function for sys-

tematic trends, if they are present improve the model



MAXIMUM LIKELIHOOD & LEAST-SQUARES

xi = fi(θ) + εi

data model residual or noise

Likelihood function

L =
∏

i

P (xi | θ) =
∏

i

P (εi)

For independent Gaussian errors, εi,

P (εi) =
1

√

2πσ2
i

exp[−ε2

i/2σ
2

i ]

and hence maximising ln(L) becomes

ln(L) = const −
1

2

∑

i

[xi − fi(θ)]
2/σ2

i

and is the same as minimising

F (θ) =
1

2

∑

i

[xi − fi(θ)]
2/σ2

i

Quadratic minimisation/maximisation problem which solve by either direct

searches or by solving m non-linear equations

∂F (θ)

∂θj

= 0 ; j = 1, 2, 3.......m



Example – Optimal Spectral Extraction

1. pre-process 2D image to remove instrumental signature (bias, trim, flat-

field, correct for slit response, “field” distortion)

2. locate spectrum and accurately track position as a function of wave-

length – worry about wavelength dependent slit losses due to not ob-

serving at parallactic angle

3. estimate sky at all wavelengths along spectrum, “subtract” off and keep

– useful to check wavelength calibration

4. optimally extract spectrum using variance weighted profile fitting method

5. primary wavelength calibration via arcs – beware position of object in

slit causes wavelength shifts, as does spectrograph flexure

6. flux calibrate extracted spectrum via equivalent observations of spectro-

graphic standards using wide and narrow (normal) slit

7. what is optimum slit width to use for target observations ?



Example – Image Parameter Errors

Consider an idealised photon event distribution {xi, yi} from an image with

normalised profile φ(x, y) ie.
∫

φ(x, y)dxdy = 1 and total flux η observed in

locally constant background flux density b.

L =
N
∏

i=1

η φ(xi, yi) + b

lnL =
N
∑

i=1

ln[η φ(xi, yi) + b]

For isolated images the MVB for intensity and position are given by

var{η̂} = [
∫ ∫ φ2(x, y)

ηφ(x, y) + b
dxdy]−1

var{θ̂x} = [
∫ ∫ η2(∂φ/∂θx)

2

ηφ(x, y) + b
dxdy]−1

For example, for Gaussian images I(r) = Ipexp(−r2/2σ2

G)

faint images intensity MVB ⇒ error =
√

4πσ2
G σnoise

bright images error =
√

2πσ2
GIp

faint images position MVB ⇒ error =
√

2/π σnoise/Ip

bright images error = 1/
√

2πIp

Extend to discrete pixels by replacing integrals with summations → predict

loss of information.



Example – Optimally Combining Images

First align astrometrically apply intensity mapping of the form

new = raw × scale + shift

to correct for varying sky levels or atmospheric transmission.

Consider a matched series of scaled values xi = x + εi with PDF

P (εi) = α.N(0, σi) + β.U(−a, a)

where N(0, σi) represents the Gaussian core of the noise distribution, and

the uniform distribution, U(−a, a), represents the non-Gaussian extended

tail. If the range [−a, a] is large compared to the core size and the fraction of

outlying points is low, β << 1, then to a good approximation this distribution

is equivalent to

P (εi) =
α

√

2πσ2
i

.exp(
−ε2

i

2σ2
i

), |εi| ≤ kσi (1)

= β, kσi < |εi| ≤ a

= 0, |εi| > a

or could have postulated this form for the PDF at the beginning. Assuming

independent measurements, xi, minimising the log-likelihood function then

leads to the following estimator for x̂,

x̂ =

∑m′

i=1
xi/σ

2

i
∑m′

i=1
1/σ2

i

where m′ denotes the observations within the k-sigma clipped range. Equa-

tion solved iteratively as clipping boundary function of current estimates of

x̂ (and σ̂2), ⇒ k-sigma clipping ≡ MLE for this PDF form.



MAXIMUM LIKELIHOOD & C-STATISTIC

The C-statistic deals with low count levels and generalises the χ2 method for

situations where event rate per “cell” is 0,1,2.....

Observe ni events per cell and model predicts mi

P (ni | mi) = e−mi
(mi)

ni

ni!

Series of N independent cells covering range of model prediction – then like-

lihood of observations is

L =
∏

i

P (ni | mi)

ln(L) =
∑

i

−mi + ni ln(mi) − ln(ni!)

The last term on the RHS is a constant hence maximising the likelihood is

identical to maximising

∑

i

−mi + ni ln(mi) = C − statistic



PRESS & SCHECTER FORMALISM – 1976 ApJ 203 p557

........or model fitting without binning the data + null results

Example: redshift & column density distribution of LLS – model

f(N, z) = k N−β (1 + z)γ

Imagine partioning observable N, z plane into “cells”.

Let expected number of observed data points in cell i be φi

φi = f(N, z)i δV

Probability of observing xi points in cell i

P (xi) = e−φi
φxi

i

xi !

Let δV → 0 then xi = 1 LLS detected xi = 0 none detected.

Therefore the likelihood function for QSOj is

Lj =
∏

i

P (xi) =
∏

i

e−φi
φxi

i

xi !

=
∏

i

e−φi .
∏

i

φi e−φi

empty cells detected cells

ln(Lj) =
∑

i

−φi +
m
∑

i=1

ln(φi)

all cells detected

ln(Lj) = −
∫

Nj

∫

zj

f(N, z) dNdz +
m
∑

i=1

ln(f(N, z)i



STRUCTURAL ANALYSIS

........or curve fitting with errors on both variables

Model Yi = f(Xi | θ)

Observe yi = Yi + εi independent errors

and xi = Xi + δi with variance σ2

εi
σ2

δi

Likelihood L =
∏N

i=1
P (xi, yi | θ)

ln(L) = −N ln(2π) −
N

2

∑

i

ln(σ2

δi
.σ2

εi
) −

1

2

∑

i





δ2

i

σ2
δi

+
ε2

i

σ2
εi





For unknown errors the problem is insoluble – for known errors

ln(L) = const −
1

2

∑

i

[xi − Xi]
2

σ2
δi

+
[yi − Yi]

2

σ2
εi

and the solution effectively solves for Xi and θj ie. N + m unknowns

∂ln(L)

∂Xi

=
(xi − Xi)

σ2
δi

+
∂f

∂Xi





yi − f(Xi | θ)

σ2
εi



 = 0

∂ln(L)

∂θj

=
∑

i

∂f

∂θj





yi − f(Xi | θ)

σ2
εi



 = 0

(see Hodgkin et al. MNRAS 2009 for an example application of this)



NUMERICAL CONSIDERATIONS

“Numerical Recipes” – Press, Flannery, Teukolsky, Vettering

“Practical Optimisation” – Gill, Murray & Wright

Solve m non-linear partial differential equations or maximise/minimise log-

likelihood function based on a Taylor expansion

F (θ + αP ) = F (θ) + αP Tg(θ) +
1

2
α2P TG(θ)P + ........

g(θ) is gradient vector, G(θ) is the Hessian matrix, θ is current parameter

vector and αP the update vector.

Descent condition is obviously F (θ + αP ) < F (θ)

Close to the solution θ̂

F (θ̂ + ∆θ) = F (θ̂) +
1

2
∆θTG(θ̂)∆θ

hence properties of F (θ̂) depend on eigenvalues of Hessian matrix.

1. Algorithmically test for converge of θ the current estimate

2. Compute a search direction P

3. Compute a step length α = univariate minimisation

4. Set θ = θ + αP and repeat from step 1.



a. DIRECT SEARCH METHODS

Construct grid of parameter points and calculate F (θ), look for minimum.

Iterate to finer grid if necessary.

Can be awkward and inefficient in m-D problems when m is large.

b. STEEPEST DESCENT METHODS (+ conjugate gradient)

uses 0th and 1st derivative information

θ → θ − αg(θ)

α step length along gradient vector for minimum of F (θ), repeat. If converges

gives optimal solution, can be efficient but problem with linear convergence

(slow) and saddle points (may never converge).

c. VARIANTS ON GAUSS-NEWTON METHODS

0th, 1st and 2nd derivative information derive local quadratic model

F (θ + αP ) ≈ F (θ) + αP Tg(θ) +
1

2
α2P TG(θ)P

finds local minimum with GP = −g, solve to give search direction – may need

to compute α rather than assume unity, since then allows for perturbations

from local quadratic model.

Problems, have to compute Hessian (and gradient), note that for LS problems

can approximate well using only 1st derivative information.


