
FOURIER TRANSFORMS
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Properties

1. Shift origin by ∆t F → F eiw∆t

| F | invariant | F |2 = power spectrum

2. If f(t), fn real then F (w) = F ∗(−w) and

Fk = F ∗
−k = F ∗

N−k = FN+k ie. cyclic

3. Parseval’s theorem
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Compute DFT using an FFT algorithm → N × log2(N)

See Brault & White 1971, A&A, 13 169, for a tutorial introduction.



CONVOLUTION

g(x) =
∫ ∞
−∞

f(u) h(x − u) du → f ⊗ h

FT l

G(w) = F (w) H(w)

CORRELATION

g(x) =
∫ ∞
−∞

f(u) h(x + u) du

FT l

G(w) = F (w) H∗(w)

If h symmetric – correlation and convolution are the same.

POWER SPECTRUM

Power spectrum =| F (w) |2

FT l

Autocorrelationfunction =
∫ ∞
−∞

f(u) f(x + u) du

WINDOW FUNCTIONS

fobs(t) = f(t) w(t)

where w(t) = 1 0 ≤ t < T ; = 0 elsewhere

Fobs(w) = F (w) ⊗ W (w)



SHANNON’S SAMPLING THEOREM

Shannon 1949

If f(t) is a continuous signal bandlimited such that −νN ≤ ν ≤ νN then f(t)

can be completely specified by sampling at an interval

∆t = 1/2νN

f(t) =
∑

n
xn

sin(2πνN t − nπ)

2πνN t − nπ
≡ xn ⊗

sin(2πνN t)

2πνN t

where xm = f(m∆t)

Expanding f(t) as a series of orthogonal functions. If 0 ≤ t ≤ T then f(t) ≡
point in an 2TνN dimensional space.

Also known as the perfect interpolation formula.

Note that real signals are bandlimited in both the signal & Fourier domain.

Commonly used interpolation methods include:

nearest neighbour; binlinear; bicubic spline; and assorted Lanczos variants.



COMBINING SIGNALS AND NOISE

Consider a series of zero-mean random variables (ie. noise in some signal)

{x1, x2, x3, .......xn}, form a linear combination

y =
n

∑

k=1

ak xk

what is the noise in y ?

From CLT y → Gaussian distribution, in this case with zero-mean, and

variance σ2.

var{y} = < y2 > = <
∑

k

ak xk

∑

j

aj xj >=
∑

k j

ak aj < xkxj >

σ2 = var{y} = aTC a

where a is the vector of coefficients, C is the covariance matrix with elements

ckj =< xk xj >= σ2
kj and T denotes transpose.

Special cases:-

For independent variables σ2 =
∑

k a2
k σ2

kk

For σkk = σnoise and
∑

k ak = 1, (a filter), noise is reduced by
∑

k a2
k.

If ak are coefficients derived from a normalised Gaussian filter, the “noise”

variance is reduced by 1/
√

4πσg in 1D and 1/4πσ2
g in 2D.



MAXIMISING SIGNAL:TO:NOISE

........... or aim to keep noise in output to minimum.

Assume all signal levels are suitably normalised to the same average level (by

pre-scaling). Form a new signal by

rnew =
∑

k

wk rk =
∑

k

wk(sk + nk)

Constrain weights
∑

k wk = 1 ⇒ signal level unchanged

Output noise variance =
∑

k w2
kσ

2
k minimise subject to

∑

k wk = 1

Implies the optimum weights are given by

wjopt
=

1/σ2
j

∑

j 1/σ2
j

and the output noise in this case is

σ2
out =

1
∑

j 1/σ2
j



PERIODICITY ESTIMATION I

Estimate period; form of periodic component; degree of periodicity

Classical methods: autocorrelation function / power spectrum

φ(τ) =
∫

s(t) s(t + τ) dt

FT l

Φ(ω) =| S(ω) |2

Least-squares method (Friedman, 1978 IEEE.....): – model problem

s(t) = so(t) + a(t); so(t) = so(t + kτ)

where so(t) is periodic component, 0 ≤ t < τ , and a(t) is aperiodic compo-

nent.

minimise I(τ) =
∫ T

0
w(t) [s(t) − so(t)]

2 dt

for all periods τ of interest, where w(t) is the sample window.

≈ maximum
K−1
∑

k=1

φ(kτ)

(K − 1) φ(0)



Figure 1: Example of periodic signal with peak signal:noise = 2:1 and the Fourier amplitude

spectrum. The fundamental period and the first two harmonics clearly stand out.



PERIODICITY ESTIMATION II

Sparsely sampled data methods

Phase minimisation – Lafler & Kinman 1965 ApJS p216;

Stellingworth 1978 AJ

Minimise “smoothness” of phase-folded light curve

θ =
∑

i

(mi − mi+1)
2/

∑

i

(mi − m̄)2

where mi&mi+1 are adjacent phase magnitudes

Sine-curve model fitting

ft = A sin(
2πt

τ
− φ) + B

Note that the DFT and sine-curve modelling are exactly the same method

iff either T >> τ or T/τ = integer and the sampling is complete.

Sine curve fitting is also known as the Lomb-Scargle method, see Press &

Rybicki (1989) for fast implementation and references.



Figure 2: Example of sine curve fitting to determine the period (0.6343 days) and lightcurve

of an RRLyrae star: top left input data (black) and residuals after period fitting (red); top

right the phase-folded lightcurve (black) and residuals (red); bottom left the period finding

statistic; bottom right the Fourier amplitude spectrum of the window function.



CROSS-CORRELATION & MAXIMUM LIKELIHOOD

φτ =
∑

t
yt xt+τ

cross-correlation function data reference signal

Aims: detect signal in data; accurately estimate position τ .

Rephrase the problem as model fitting (e.g. radar pulse echo location

Woodward & Davies MNRAS 1958)

yt = xt+τ + εt

data model residual or noise

Then the Likelihood function is

L =
∏

t
P (yt | θt) =

∏

t
P (εt)

Assume initially independent Gaussian noise with variance σ2
t , then the like-

lihood of the data is given by

L(y | x, τ, σ2
t ) =

N
∏

t=1

P (εt)

L(τ) = (2π)−N/2 (
N
∏

t=1

σ2
t )

−1/2 exp



−
N
∑

t=1

(yt − xt+τ)
2/2σ2

t





ln(L) = const −
N
∑

t=1

(yt − xt+τ)
2/2σ2

t

Maximum likelihood ≡ least-squares ≡ cross–correlation



Figure 3: Simulation of radar pulse echo location using pulses with peak signal:noise of

1,2,4,8. The top panel shows the input data and the bottom panel the results of applying a

matched detection filter (cross-correlation).



CROSS-CORRELATION

Aims: detect signal in noise and accurately estimate relative shift

φτ =
∑

t
yt xt+τ

Normalise to lie in range ±1 since

φτ ≤
√

∑

y2
t

∑

x2
t

Used most often in astronomy for estimating redshifts and intrinsic velocity

dispersions eg. galaxies, quasars, stellar clusters

Fourier quotient method (Sargent et al. 1977 ApJ 212 326)

g(λ′) ∝ s(λ′) ⊗ b(λ′) ⊗ δ(∆λ′)

FT l

G(k) = γ S(k) exp

[

−1

2
(
2πkσ

N
)2 +

2πikδ

N

]

Direct method (Tonry & Davies 1979 AJ 84 1511) – maximise

g(λ′) ⊗ t(λ′)

∗ Note – λ′ denotes log(λ) binning



Practicalities of Cross-Correlation

• cross-correlation ≡ convolution ≡ optimal matched detection // faint

spectral features, images in 2D data

• choosing radial velocity standards ↔ template matching, classification

• rebinning to log(λ) necessary in general since λobs = (1 + z) λref

• continuum removal (ie. slowly varying spatial components such as DC

level, slopes etc....) usually necessary, also called rectifying

• Apodizing/ windowing to deal with “edges” and

• Fourier computation -v- spatial computation O(n2) -v- O(nlogn)

• correcting to Helio-centric, LSR, Galactocentric velocity systems

• position of objects in slit can cause velocity shifts

• sky absorption lines or residuals from sky lines during spectral extraction

in low signal:noise data ⇒ lock on to wrong velocity

• error estimation e.g. Tonry & Davis (1979) messy, but treat as ML or

LS problem → alternative


