What is the error on a quantity that is a function of several random variables

$$
\theta=f(x, y, \ldots \ldots)
$$

If the variance on $x, y, \ldots .$. is small and uncorrelated variables then

$$
\operatorname{var}(\theta)=(\partial f / \partial x)^{2} \operatorname{var}(x)+\ldots \ldots
$$

Usually not the case \Rightarrow problem

Why: define $z=f(x, y) ; w=y ; \quad \Rightarrow x=g(z, w)$
The joint PDF of w, z given $\operatorname{PDFs} P_{1}(x), P_{2}(y)$ is

$$
\begin{gathered}
P(w, z) d w d z=P_{1}(x) P_{2}(y) d x d y=P_{1}(g(z, w)) P_{2}(w) \frac{\partial(x, y)}{\partial(w, z)} d w d z \\
P(z)=\int P(w, z) d w
\end{gathered}
$$

eg. $z=x+y$

$$
P(z)=\int P_{1}(z-w) P_{2}(w) d w \quad \text { convolution }
$$

eg. $z=x / y$

$$
P(z)=\int P_{1}(w z) P_{2}(w) w d w
$$

In this latter case suppose $P_{1}=N\left(0, \sigma_{1}^{2}\right) ; P_{2}=N\left(0, \sigma_{2}^{2}\right)$

$$
P(z)=\frac{1}{\pi} \frac{\sigma_{1} / \sigma_{2}}{\sigma_{1}^{2} / \sigma_{2}^{2}+z^{2}} \quad \text { Cauchy distribution }
$$

Consider a series of random variables $\left\{x_{i} ; i=1,2, \ldots . n\right\}$, identically distributed with mean μ and variance σ^{2}.

Define $S=\sum_{i=1}^{n} x_{i}$ and $\mu_{s}=n \mu ; \quad \sigma_{s}^{2}=n \sigma^{2}$, then

$$
U=\frac{S-\mu_{s}}{\sqrt{\sigma_{s}^{2}}}=\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)}{\sqrt{n \sigma^{2}}}
$$

Consider the characteristic functions of $U, \phi_{u}(t)$, and the ith term, $\phi_{i}(t)$, in the summation, then

$$
\begin{gathered}
\phi_{u}(t)=\prod_{i=1}^{n} \phi_{i}(t) \\
\phi_{i}(t)=\phi(t)=1+\sum_{r=1}^{\infty} \mu_{r}^{\prime} \frac{(i t)^{r}}{r!}=1+\mu_{1}^{\prime}+\mu_{2}^{\prime} \frac{(i t)^{2}}{2!}+\ldots . \\
\phi_{u}(t)=\left[1-\frac{t^{2}}{2 n}+O\left(\frac{1}{n^{3 / 2}}\right)\right]^{n}
\end{gathered}
$$

As $n \rightarrow \infty$ then

$$
\phi_{u}(t)=e^{-t^{2} / 2}
$$

which is the Fourier transform of an $\mathrm{N}(0,1)$ distribution
The implies than S is distributed as $\mathrm{N}\left(\mu_{s}, \sigma_{s}^{2}\right)$.
Can generalise to arbitrary distributions but it does not hold for distributions that lack a 1st or 2 nd moment, cf. Cauchy distribution.

Figure 1: Example of CLT using U[-0.5,0.5]: red PDF $\mathrm{n}=1$; green $\operatorname{PDF} \mathrm{n}=2$; blue PDF $\mathrm{n}=4$; black PDF $\mathrm{n}=12$ generated distribution+Gaussian equivalent overlaid.

The fundamental computer-generated random number is from a uniform distribution $U(0,1)$ - Gaussian distributions and the rest are derived from it. These are extensively used in simulations, random sampling, testing algorithms, Monte Carlo methods and so on.

$$
U_{n}=X_{n} / m \quad \text { eg. } m=2^{32}
$$

Linear congruential method (Lehmer - 1949)

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod (m)
$$

m - modulus, $a-$ multiplier, c - increment, $X_{0}-$ starting value (seed) usually a large odd number.

Recursive since $X_{n+1}=f\left(X_{n}\right)$ and hence periodic and therefore the useful range of the cycle is $<\sqrt{m}^{t}$ in t -dimensions since max period is m.

Most system-supplied random number generators are awful.
Knuth recommends:- $m=2^{32}$ or 2^{64} integer arithmetic efficient at $\bmod (m)$, $a \bmod 8=5,0.01 m<a<0.99 m, c=1$ or a. For example

$$
X_{n+1}=\left(69069 X_{n}+1\right) \bmod \left(2^{32}\right)
$$

BAYES' THEOREM I

Laplace - "La theorie des probabilities n'est que le bon sens confirme par le calcul"

Kolmogorov axioms:

1. Any random event A has a probability $P(A)$ bounded by $0-1$.
2. The sure event has $P(A)=1$
3. If A and B are exclusive, $P(A$ or $B)=P(A)+P(B)$
\rightarrow if A and B are dependent, $P(A$ and $B)=P(A \mid B) \cdot P(B)$
\rightarrow if A and B are independent $P(A \mid B)=P(A)$;

$$
P(A, B)=P(A) \cdot P(B)
$$

Laplace's theory of probability:
a. $P(A \mid B)+P(\bar{A} \mid B)=1$
b. Conditional probability $-P(A, B)=P(A \mid B) \cdot P(B)$

Repeated application of the above leads to Bayes' theorem (1769)

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

An innocent and uncontroversial result until you add in Bayes' postulate "in the absence of other knowledge all prior probabilities should be treated as equal" and substitute

BAYES' THEOREM II

1. Hypothesis testing and confidence intervals.

Which hypothesis ? How many parameters ?

$$
P(\text { hypothesis } \mid \text { data })=\frac{P(\text { data } \mid \text { hypothesis }) \cdot P(\text { hypothesis })}{P(\text { data })}
$$

Bayesian estimator (MAP) is \equiv model of learning process
Prior probability \rightarrow Posterior probability
2. Parameter estimation, eg. model, θ, from data, d,

$$
p(\theta \mid d)=\frac{P(d \mid \theta) \cdot P(\theta)}{P(d)}
$$

The prior is important if no. of parameters \approx no. of data points Bayes' \Rightarrow Maximum entropy method (Jaynes 1957......), pixon-based image reconstruction (Peutter 1996).
3. Bayes' theorem is also used, generally less controversially, in classification schemes whereby, class c_{j} has probablity

$$
P\left(c_{j} \mid d\right)=\frac{P\left(d \mid c_{j}\right) P\left(c_{j}\right)}{\sum_{j} P\left(d \mid c_{j}\right) P\left(c_{j}\right)}
$$

Bayes' classification \rightarrow ANNs - generally non-parametric; the industry standard parametric classifier is AUTOCLASS (Cheeseman 1996).

How do you define priors ? For the location parameter μ - reasonable to use a uniform distribution to express ignorance about prior distribution? However what range to use ?

Next consider the scale (sigma) (scatter) parameter, σ

$$
P(\sigma)=\text { const } \quad \text { Bayesian prior }
$$

range again ? σ is presumably + ve how to incorporate that ?

$$
P\left(\sigma^{2}\right)=\text { const } \quad \text { solves }+ \text { ve problem }
$$

but if above correct then $\Rightarrow P(\sigma) \propto \sigma$??

Jeffries (1932 - Theory of Probability) suggested using

$$
P\left(l o g_{e} \sigma\right)=\mathrm{const} \quad \Rightarrow P(\sigma) d \sigma \propto \frac{d \sigma}{\sigma}
$$

this is invariant under both scale changes and powers of σ transformations, and also solves + ve problem.

Jaynes (1957) suggested using the concept of Maximum Entropy to define priors in a consistent way by incorporating all the constraints such that subject to these constraints the assigned prior distribution has maximum entropy (randomness).
$\underline{\text { Some conceptual problems with Bayesian -v- Likelihood estimation }}$

The Gambler's Dilemma - a solution?

You observe \mathbf{a} successes and \mathbf{b} failures in $\mathbf{a}+\mathbf{b}$ trials, what is the probability of \mathbf{c} successes and \mathbf{d} failures in $\mathbf{c}+\mathbf{d}$ further trials ?

From Binomial distribution, if r is the unknown probability of success

$$
P(a \mid r)={ }^{a+b} C_{a} r^{a}(1-r)^{b}
$$

Simple-minded approach - wrong....but....well.....simple....

$$
\begin{aligned}
& r=a / a+b \quad 1-r=b / a+b \\
& \Rightarrow \quad P(c)=\frac{(c+d)!}{c!d!} \frac{a^{c} b^{d}}{(a+b)^{c+d}}
\end{aligned}
$$

Bayesian approach - using Bayes' theorem show that

$$
P(r)=P(r \mid a, b)=\frac{(a+b+1)!}{a!b!} r^{a}(1-r)^{b}
$$

Integrate out the unwanted variable, substituting for $P(c \mid r)$

$$
\begin{gathered}
P(c)=\int P(c, r) d r=\int P(c \mid r) P(r) d r \\
P(c)=\frac{(a+c)!(b+d)!(c+d)!(a+b+1)!}{a!b!c!d!(a+b+c+d+1)!}
\end{gathered}
$$

Fisher's likelihood ratio method (see book, Edwards - Likelihood)

$$
P(c)=\frac{(a+c)^{a+c}(b+d)^{b+d}(c+d)^{c+d}(a+b)^{a+b}}{a^{a} b^{b} c^{c} d^{d}(a+b+c+d)^{a+b+c+d}}
$$

Binomial prediction $a=1 b=3 c+d=20$

Figure 2: Different predictions for the Gambler's Dilemma problem.

RAYLEIGH DISTRIBUTION

For example:- measure (x, y) positions or projected $\left(v_{x}, v_{y}\right)$ velocities what is the PDF of the error in distance or total projected velocity ?

Start from a bivariate Gaussian distribution

$$
P(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\left[x^{2} / 2 \sigma^{2}+y^{2} / 2 \sigma^{2}\right]}
$$

where $x \rightarrow x-\mu_{x}$ and $y \rightarrow y-\mu_{y}$
What is PDF of r, θ ? where

$$
\begin{gathered}
x=r \cos \theta \quad y=r \sin \theta \\
P(r, \theta) d r d \theta=P(x, y) d x d y=\frac{1}{2 \pi \sigma^{2}} e^{-r^{2} / 2 \sigma^{2}} r d r d \theta
\end{gathered}
$$

The distribution of θ clearly uniform, but

$$
P(r) d r=\frac{1}{\sigma^{2}} r e^{-r^{2} / 2 \sigma^{2}} d r
$$

Maximum occurs at $r=\sigma$
Average value of r is $\langle r\rangle=\sqrt{\frac{\pi \sigma^{2}}{2}}$
Variance of r is $<r^{2}>=2 \sigma^{2}$
Cumulative probability distribution

$$
C(r<R)=1-e^{-R^{2} / 2 \sigma^{2}} \quad C(r>R)=e^{-R^{2} / 2 \sigma^{2}}
$$

Rayleigh distribution

Figure 3: Rayleigh distribution $\mathrm{P}(\mathrm{r})$ and $\mathrm{C}(<\mathrm{r})$ as a function of r / σ.

LIKELIHOOD OF IDENTIFICATION

Assume radially symmetric errors; probability of detection at distance r is then

$$
P(r \rightarrow \delta r \mid i d)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) \cdot \delta r
$$

where σ^{2} combined variance. Probability of confusing source

$$
P(r \rightarrow \delta r \mid c)=2 \pi r \rho . \delta r
$$

where ρ is surface density of these.
From Bayes' theorem

$$
\begin{aligned}
P(i d \mid r) & =\frac{P(i d) \cdot P(r \mid i d)}{P(i d) \cdot P(r \mid i d)+P(c) \cdot P(r \mid c)} \\
P(c \mid r) & =\frac{P(c) \cdot P(r \mid c)}{P(i d) \cdot P(r \mid i d)+P(c) \cdot P(r \mid c)}
\end{aligned}
$$

Therefore

$$
P(i d \mid r)=\frac{P(i d) \cdot L(r)}{P(i d) \cdot L(r)+1}
$$

and

$$
P(c \mid r)=\frac{1}{P(i d) \cdot L(r)+1}
$$

where

$$
L(r)=\frac{P(r \mid i d)}{P(r \mid c)}=\frac{\exp \left(-r^{2} / 2 \sigma^{2}\right)}{\sigma^{2} .2 \pi \rho}
$$

ORDER STATISTICS

What is PDF of maximum, minimum, median of a series of n samples $\left\{x_{k}\right\}$ from a random distribution with $\operatorname{CDF} F(x)$ and $\operatorname{PDF} f(x)$?

The probability that the k th ordered value $\leq y$ is

$$
P\left(X_{k} \leq y\right)=\sum_{j=k}^{n}{ }^{n} C_{j}[F(y)]^{j}[1-F(y)]^{n-j}
$$

For example, the CDF of the min and max are

$$
\begin{gathered}
P\left(x_{\min } \leq y\right)=1-[1-F(y)]^{n} \\
P\left(x_{\max } \leq y\right)=[F(y)]^{n}
\end{gathered}
$$

and the PDF are given by

$$
\begin{gathered}
P_{\min }(y)=n[1-F(y)]^{n-1} f(y) \\
P_{\max }(y)=n[F(y)]^{n-1} f(y)
\end{gathered}
$$

Simple example: uniform distribution $\{-a \rightarrow+a\}$

$$
\begin{aligned}
P_{\min }=\frac{n}{2^{n} a}\left[1-\frac{y}{a}\right]^{n-1} ; \quad P_{\max }=\frac{n}{2^{n} a}\left[1+\frac{y}{a}\right]^{n-1} \\
<y_{\min }>=-a\left[1-\frac{2}{n+1}\right] ; \quad<y_{\max }>=a\left[1-\frac{2}{n+1}\right]
\end{aligned}
$$

