
COMBINING VARIABLES – ERROR PROPAGATION

What is the error on a quantity that is a function of several random variables

θ = f(x, y, ......)

If the variance on x, y, ..... is small and uncorrelated variables then

var(θ) = (∂f/∂x)2var(x) + ......

Usually not the case ⇒ problem

Why: define z = f(x, y); w = y; ⇒ x = g(z, w)

The joint PDF of w, z given PDFs P1(x), P2(y) is

P (w, z)dwdz = P1(x)P2(y)dxdy = P1(g(z, w))P2(w)
∂(x, y)

∂(w, z)
dwdz

P (z) =
∫

P (w, z)dw

eg. z = x + y

P (z) =
∫

P1(z − w)P2(w)dw convolution

eg. z = x/y

P (z) =
∫

P1(wz)P2(w)wdw

In this latter case suppose P1 = N(0, σ2
1); P2 = N(0, σ2

2)

P (z) =
1

π

σ1/σ2

σ2
1/σ

2
2 + z2

Cauchy distribution



CENTRAL LIMIT THEOREM - SIMPLE PROOF

Consider a series of random variables {xi ; i = 1, 2, ....n}, identically dis-

tributed with mean µ and variance σ2.

Define S =
∑n

i=1 xi and µs = nµ; σ2
s = nσ2, then

U =
S − µs

√

σ2
s

=
n

∑

i=1

(xi − µ)√
nσ2

Consider the characteristic functions of U, φu(t), and the ith term, φi(t), in

the summation, then

φu(t) =
n

∏

i=1

φi(t)

φi(t) = φ(t) = 1 +
∞
∑

r=1

µ′
r

(it)r

r!
= 1 + µ′

1 + µ′
2

(it)2

2!
+ .....

φu(t) =



1 − t2

2n
+ O(

1

n3/2
)





n

As n → ∞ then

φu(t) = e−t2/2

which is the Fourier transform of an N(0,1) distribution

The implies than S is distributed as N(µs, σ
2
s).

Can generalise to arbitrary distributions but it does not hold for distributions

that lack a 1st or 2nd moment, cf. Cauchy distribution.



Figure 1: Example of CLT using U[-0.5,0.5]: red PDF n=1; green PDF n=2; blue PDF

n=4; black PDF n=12 generated distribution+Gaussian equivalent overlaid.



Generating Random Numbers

The fundamental computer-generated random number is from a uniform dis-

tribution U(0, 1) – Gaussian distributions and the rest are derived from it.

These are extensively used in simulations, random sampling, testing algo-

rithms, Monte Carlo methods and so on.

Un = Xn/m eg. m = 232

Linear congruential method (Lehmer - 1949)

Xn+1 = (a Xn + c) mod(m)

m− modulus, a− multiplier, c− increment, X0− starting value (seed) usually

a large odd number.

Recursive since Xn+1 = f(Xn) and hence periodic and therefore the useful

range of the cycle is <
√

m
t
in t-dimensions since max period is m.

Most system-supplied random number generators are awful.

Knuth recommends:- m = 232 or 264 integer arithmetic efficient at mod(m),

a mod 8 = 5 , 0.01m < a < 0.99m , c = 1 or a . For example

Xn+1 = (69069 Xn + 1) mod(232)



BAYES’ THEOREM I

Laplace – “La theorie des probabilities n’est que le bon sens

confirme par le calcul”

Kolmogorov axioms:

1. Any random event A has a probability P (A) bounded by 0–1.

2. The sure event has P (A) = 1

3. If A and B are exclusive, P (A or B) = P (A) + P (B)

→ if A and B are dependent, P (A and B) = P (A | B).P (B)

→ if A and B are independent P (A | B) = P (A);

P (A, B) = P (A).P (B)

Laplace’s theory of probability:

a. P (A | B) + P (Ā | B) = 1

b. Conditional probability – P (A, B) = P (A | B).P (B)

Repeated application of the above leads to Bayes’ theorem (1769)

P (A | B) =
P (B | A).P (A)

P (B)

An innocent and uncontroversial result until you add in Bayes’ postulate “in

the absence of other knowledge all prior probabilities should be treated as

equal” and substitute .......



BAYES’ THEOREM II

1. Hypothesis testing and confidence intervals.

Which hypothesis ? How many parameters ?

P (hypothesis | data) =
P (data | hypothesis).P (hypothesis)

P (data)

Bayesian estimator (MAP) is ≡ model of learning process

Prior probability → Posterior probability

2. Parameter estimation, eg. model, θ, from data, d,

p(θ | d) =
P (d | θ).P (θ)

P (d)

The prior is important if no. of parameters ≈ no. of data points

Bayes’ ⇒ Maximum entropy method (Jaynes 1957......),

pixon-based image reconstruction (Peutter 1996).

3. Bayes’ theorem is also used, generally less controversially, in classifica-

tion schemes whereby, class cj has probablity

P (cj | d) =
P (d | cj) P (cj)

∑

j P (d | cj) P (cj)

Bayes’ classification → ANNs – generally non-parametric; the industry

standard parametric classifier is AUTOCLASS (Cheeseman 1996).



Some practical problems with Bayesian estimation

How do you define priors ? For the location parameter µ – reasonable to use a

uniform distribution to express ignorance about prior distribution ? However

what range to use ?

Next consider the scale (sigma) (scatter) parameter, σ

P (σ) = const Bayesian prior

range again ? σ is presumably +ve how to incorporate that ?

P (σ2) = const solves + ve problem

but if above correct then ⇒ P (σ) ∝ σ ??

Jeffries (1932 - Theory of Probability) suggested using

P (logeσ) = const ⇒ P (σ)dσ ∝ dσ

σ

this is invariant under both scale changes and powers of σ transformations,

and also solves +ve problem.

Jaynes (1957) suggested using the concept of Maximum Entropy to define

priors in a consistent way by incorporating all the constraints such that sub-

ject to these constraints the assigned prior distribution has maximum entropy

(randomness).

Some conceptual problems with Bayesian -v- Likelihood estimation



The Gambler’s Dilemma – a solution ?

You observe a successes and b failures in a + b trials, what is the probability

of c successes and d failures in c + d further trials ?

From Binomial distribution, if r is the unknown probability of success

P (a | r) =a+b Ca ra(1 − r)b

Simple-minded approach – wrong....but....well.....simple....

r = a/a + b 1 − r = b/a + b

⇒ P (c) =
(c + d)!

c! d!

ac bd

(a + b)c+d

Bayesian approach – using Bayes’ theorem show that

P (r) = P (r | a, b) =
(a + b + 1)!

a! b!
ra (1 − r)b

Integrate out the unwanted variable, substituting for P (c|r)

P (c) =
∫

P (c, r) dr =
∫

P (c | r) P (r) dr

P (c) =
(a + c)! (b + d)! (c + d)! (a + b + 1)!

a! b! c! d! (a + b + c + d + 1)!

Fisher’s likelihood ratio method (see book, Edwards – Likelihood)

P (c) =
(a + c)a+c (b + d)b+d (c + d)c+d (a + b)a+b

aa bb cc dd (a + b + c + d)a+b+c+d



Figure 2: Different predictions for the Gambler’s Dilemma problem.



RAYLEIGH DISTRIBUTION

For example:– measure (x, y) positions or projected (vx, vy) velocities what is

the PDF of the error in distance or total projected velocity ?

Start from a bivariate Gaussian distribution

P (x, y) =
1

2πσ2
e−[x2/2σ2+y2/2σ2]

where x → x − µx and y → y − µy

What is PDF of r, θ ? where

x = rcosθ y = rsinθ

P (r, θ)drdθ = P (x, y)dxdy =
1

2πσ2
e−r2/2σ2

rdrdθ

The distribution of θ clearly uniform, but

P (r) dr =
1

σ2
re−r2/2σ2

dr

Maximum occurs at r = σ

Average value of r is < r >=
√

πσ2

2

Variance of r is < r2 >= 2 σ2

Cumulative probability distribution

C(r < R) = 1 − e−R2/2σ2

C(r > R) = e−R2/2σ2



Figure 3: Rayleigh distribution P(r) and C(<r) as a function of r/σ.



LIKELIHOOD OF IDENTIFICATION

Assume radially symmetric errors; probability of detection at distance r is

then

P (r → δr|id) =
r

σ2
exp(− r2

2σ2
).δr

where σ2 combined variance. Probability of confusing source

P (r → δr|c) = 2πrρ.δr

where ρ is surface density of these.

From Bayes’ theorem

P (id|r) =
P (id).P (r|id)

P (id).P (r|id) + P (c).P (r|c)

P (c|r) =
P (c).P (r|c)

P (id).P (r|id) + P (c).P (r|c)
Therefore

P (id|r) =
P (id).L(r)

P (id).L(r) + 1

and

P (c|r) =
1

P (id).L(r) + 1

where

L(r) =
P (r|id)

P (r|c) =
exp(−r2/2σ2)

σ2.2πρ



ORDER STATISTICS

What is PDF of maximum, minimum, median of a series of n samples

{xk} from a random distribution with CDF F (x) and PDF f(x) ?

The probability that the kth ordered value ≤ y is

P (Xk ≤ y) =
n

∑

j=k

nCj [F (y)]j [1 − F (y)]n−j

For example, the CDF of the min and max are

P (xmin ≤ y) = 1 − [1 − F (y)]n

P (xmax ≤ y) = [F (y)]n

and the PDF are given by

Pmin(y) = n [1 − F (y)]n−1f(y)

Pmax(y) = n [F (y)]n−1f(y)

Simple example: uniform distribution {−a → +a}

Pmin =
n

2na
[1 − y

a
]n−1 ; Pmax =

n

2na
[1 +

y

a
]n−1

< ymin >= −a [1 − 2

n + 1
] ; < ymax >= a [1 − 2

n + 1
]


