
STATISTICS IN ASTRONOMY

• How can data be used best/optimally ?

• Error assignment ? What does it mean ?

Confidence intervals ?

• Model fitting = testing hypotheses = what parameters ?

• Correlation between variables ? Are objects distributed randomly ?

Clustered ?

• Limits on knowledge = imperfect equipment, sample size

• Underlying distributions frequently non-Normal and often

unknown

• How to deal with noise outliers and unknown errors?

• Non-parametric methods; why do we need them ?

• How to group objects in classes ? Classify new objects ?



A FEW SIMPLE? PROBLEMS

• Everyone’s dilemma

How do you make best use of prior knowledge, or information ?

• The gambler’s dilemma

You observe a successes and b failures in a + b trials, what is the

probability of c successes and d failures in c + d further trials ?

• The astronomer’s dilemma I

Example - the first Hubble Diagram = errors on both V and R

How to calculate Ho ?

• The astronomer’s dilemma II

Example - Satellites of the Milky Way = small sample size;

can you compute the form of the radial distribution ?

To bin or not to bin ?



BAYES’ THEOREM AND PRIOR KNOWLEDGE

You are unlucky enough to:-

• have had your DNA typed and recorded in a databank of ten million

punters

• your DNA type matched ’perfectly’ with a sample taken at the scene of

a serious crime

A government scientist said “this test is virtually infallible with less than a

one in million chance of giving the wrong answer”

Are you worried ?

P (false alarm) = P (DNA|innoc) = 10−6

P (guilt|DNA) =
P (DNA|guilt)P (guilt)

P (DNA|guilt)P (guilt) + P (DNA|innoc)P (innoc)



LEAST SQUARES – REGRESSION

Hubble law, v = Ho d, as example of y = a x problem

yi = a xi + εi

where yi dependent & xi independent variables; εi is error
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∑

i

xi yi/
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What is error in â ?
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But now suppose error in xi as well !
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PROBABILITY FUNCTIONS–I

Probability density function (PDF) P (x), then P (x)dx probability of x being

in the range x → x + dx

P (x) ≥ 0 ;
∫

P (x)dx = 1

Cumulative probability function C(x) probability of x being ≤ x

C(x) =
∫ x

−∞
P (y)dy

Characteristic function is the Fourier transform of the PDF

φ(t) =
∫

eixtP (x)dx =< eixt >

Expanding the above equation

φ(t) =< 1 + x(it) +
1

2!
x(it)2 + ...... >= 1 +

∑

r

1

r!
µ′

r(it)
r

Which is none other than the moment generating function since

∂nφ(t)

∂nt
|t=0 = in < xn > = inµ′

n



PROBABILITY FUNCTIONS–II

Variable change, y = f(x), probability invariant over interval, hence

P (y) dy = P (x) dx ;⇒ P (y) = P (x) |dy

dx
|−1

Joint distribution of two or more variables

P (x, y) dxdy if independent = f(x)dx g(y)dy

related to conditional distribution by

P (x, y) dxdy = P (x|y) P (y) dxdy

and the marginal distribution which is defined as

φ(x) =
∫

P (x, y) dy



BINOMIAL AND MULTINOMIAL DISTRIBUTIONS

Binomial distribution gives probability of r successes in n trials

P (r) =n Cr pr qn−r =
n!

r!(n − r)!
pr qn−r

Rewrite this in terms of two outcomes n1, n2 with probabilities p1, p2

P (n1, n2) =
n!

n1! n2!
pn1

1 pn2

2

Now generalise to m outcomes ⇒ the Multinomial distribution

P (n1, n2, .......nm) =
n!

n1! n2!......nm!
pn1

1 pn2

2 ........pnm

m

=
n!

∏m
i=1 ni!

m
∏

i=1

pni

i



POISSON DISTRIBUTION

Random independent events eg. photon arrival at a detector

P (t)dt = λdt

Probability of n events in time 0 → t is given by

P (n, t) =
(λt)nexp(−λt)

n!

Poisson distribution for which mean and variance µ = λt; σ2 = λt

Characteristic function φ is given by

φ = eµ(eit−1)

Reminder: central moments µi are defined using

µi =
∫

(x − µ)iP (x)dx



Example: CCD – if mean count in image is N = λt

σ =
√

N

More generally, in pixel i, if signal si counts/s, background bi counts/s and

integrate for time t, what happens to the signal:to:noise, s : n, if the detector

readout noise is r ?

s : n =
si × t

√

(si + bi) × t + r2

Two special cases:-

Detector noise limited → si × t

r

Sky noise limited → si√
si + bi

×
√

t

Now suppose the total flux/s in an image is given by F =
∑Npix

i=1 si then the

equivalent expression for the total signal:noise is

s : n =
F × t

√

F × t + Npix(b × t + r2)

Now three special cases:-

Bright objects →
√

F × t

Sky limited → F
√

t /
√

Npix × b

Read noise → F × t /
√

Npix r2



GAUSSIAN DISTRIBUTION – NORMAL – N(µ, σ2)

P (x) =
1√

2πσ2
exp[−(x − µ)2

2σ2
]

This has a characteristic function φ given by

φ = eitµ−t2σ2/2

Dominant in experimentation, probability theory and statistics because:

1. Approximated from Poisson for “large” λt

µ = σ2 = λt ∼> 10

2. Central Limit Theorem

3. Distribution with maximum randomness (entropy) for given σ2

4. Analytically tractable



STATISTICS

Statistics are functions of the data alone, for example any

s = f(x1, x2, .....xi.....xN)

is a statistic.

Useful statistics are consistent ie. they converge to the expectation value

as the sample size increases and (usually) unbiased ie. on average they give

the correct answer.

The following examples are consistent unbiased estimators of mean and vari-

ance

µ̂ =
1

N

N
∑

i=1

Xi

σ̂2 =
1

N − 1

N
∑

i=1

(Xi − µ̂)2

The variance on the estimate of the mean and the variance/ standard devia-

tion is for uncorrelated variables

var(µ̂) =
1

N
σ̂2

var(σ̂2) ≈ 2(N − 1)

N 2
σ̂4

var(σ̂) ≈ 1

2N
σ̂2



SAMPLING – ESTIMATING CENTRAL LOCATION

Consider a series of measurements of some quantity, xi,

where i = 1, m. For any PDF, P (x), various estimators of “central location”

can be defined:

• MEAN minimises

< (xi − x̂)2 >i=
∫

(x − x̂)2P (x).dx

• MEDIAN minimises

< |xi − x̂| >i=
∫

|x − x̂|P (x).dx

• MODE estimates position of maximum of P (x)

• Iff P (x) exactly Gaussian (or Poisson) with variance σ2, MEAN is opti-

mum estimator with error σ/
√

m.

MEDIAN has error
√

π/2 × σ/
√

m.

• Is there a Maximum Likelihood Estimator for a “real” PDF ?



LOCATION AND SCALE ESTIMATION

Gaussian distribution

P (x) =
1√

2πσ2
exp[−(x − µ)2

2σ2
]

Cauchy distribution

P (x) =
1

πσ

1

1 + (x − µ)2/σ2

Both are examples of a generic form for unimodal distributions

P (x)dx = f(
x − µ

σ
)

dx

σ

where µ is a location parameter and σ is a scale parameter

Methods for estimation of scale (scatter) (spread) (sigma)

• rms = < (x − µ̂)2 >1/2

• modulus = < |x − µ̂| >

• FWHM = full width at half-maximum

• interquartile range
∫ xh
xl

P (x)dx = 1/2

• MAD = median of the absolute deviation from the median



χ2 DISTRIBUTION

Distribution of sum of squares of independent N(0,1) variates

χ2 =
N
∑

i=1

x2
i =

N
∑

i=1

(di − mi)
2

σ2
i

P (χ2) =
1

2ν/2(ν/2 − 1)!
e−χ2/2χν−2

where ν = the number of degrees of freedom

< χ2 >= µ = ν

var(χ2) = σ2 = 2ν

In the limit as ν → ∞

P (χ2) → N(µ, σ2)



Figure 1: Examples of χ2 distribution - N(10,20) Gaussian in red



STUDENT’S – t DISTRIBUTION

How many standard deviations is an estimate of the mean from the true

value, µ, if both the mean x̂ and the standard deviation σ̂ are estimated from

the data sample ?

Start by defining a suitably normalised variable

t =
x̂ − µ

σ̂/
√

N

Then its PDF is given by

P (t) =
(ν/2 − 1/2)!√
πν(ν/2 − 1)!

1

(1 + t2/ν)(ν+1)/2

where ν = N − 1 is the no. of degrees of freedom

< t > = 0 var{t} =
ν

ν − 2

In the limit of large ν Student’s - t → N(0, 1)

[“Student” = W.S.Gosset = brewer for Guinness]



Figure 2: Examples of Student’s t distribution - N(0,1) Gaussian in red


