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ABSTRACT

Debris disks have been found primarily around intermediateand solar mass stars (spectral types A-K) but rarely around low mass
M-type stars. We have spatially resolved a debris disk around the remarkable M3-type star GJ 581 hosting multiple planets using deep
PACS images at 70, 100 and 160µm as part of the DEBRIS Program on theHerschel Space Observatory. This is the second spatially
resolved debris disk found around an M-type star, after the one surrounding the young star AU Mic (12 Myr). However, GJ 581is
much older (2-8 Gyr), and is X-ray quiet in the ROSAT data. We fit an axisymmetric model of the disk to the three PACS images and
found that the best fit model is for a disk extending radially from 25± 12 AU to more than 60 AU. Such a cold disk is reminiscent
of the Kuiper Belt but it surrounds a low mass star (0.3 M⊙) and its fractional dust luminosityLdust/L∗ of ∼ 10−4 is much higher. The
inclination limits of the disk found in our analysis make themasses of the planets small enough to ensure the long-term stability of
the system according to some dynamical simulations. The disk is collisionally dominated down to submicron-sized grains and the
dust cannot be expelled from the system by radiation or wind pressures because of the low luminosity and low X-ray luminosity of
GJ 581. We suggest that the correlation between low-mass planets and debris disks recently found for G-type stars also applies to
M-type stars. Finally, the known planets, of low masses and orbiting within 0.3 AU from the star, cannot dynamically perturb the disk
over the age of the star, suggesting that an additional planet exists at larger distance that is stirring the disk to replenish the dust.

Key words. debris disks : circumstellar matter - planetary systems : formation - stars: planetary systems

1. Introduction

A debris disk around a main sequence star is a collection of small
bodies left over from the planet formation process. In our Solar
system, the Asteroid belt and Edgeworth-Kuiper Belt are thetwo
best known reservoirs of objects that remain from the planet
formation process and range in size from hundreds of kilome-
ters in diameter to meter-scale bodies (e.g. Jewitt et al. 2000;
Sheppard & Trujillo 2006). Such reservoirs are highly sculpted

Send offprint requests to: J-F. Lestrade, e-mail:
jean-francois.lestrade@obspm.fr
⋆ Herschel in an ESA space observatory with science instruments

provided by European-led Principal Investigator consortia and with im-
portant participation by NASA.

by the evolution of the planetary system in which they form (e.g.
Petit et al. 2001; Morbidelli et al. 2005; Lykawka et al. 2009),
and contain objects whose accretion was stymied by the for-
mation and migration of giant planets in the system, or sim-
ply occurred too slowly for them to grow larger. Since debris
disks contain a vast number of objects on very similar orbits,
they experience a continual collisional grinding which produces
and continually replenishes a population of dust. This dustal-
lows us to directly detect debris disks around other stars intwo
ways. The dust is heated by radiation from the central star, and
therefore emits thermal radiation with a temperature character-
istic of its distance from its host star (e.g. Aumann et al. 1984;
Greaves et al. 2005). In addition, the smallest grains of dust can
efficiently scatter the light of the host star (e.g. Smith & Terrile
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1984; Kalas et al. 2005). The physical and observational prop-
erties of debris disks were defined by Lagrange et al. (2000),
and their studies were recently reviewed by Wyatt (2008) and
Krivov (2010) and will eventually place our Solar system in con-
text (Greaves & Wyatt 2010).

Almost all debris disks detected by the satellitesIRAS, ISO
and Spitzer (Bryden et al. 2006; Su et al. 2006; Trilling et al.
2008), HST (Golimowski et al. 2011), and ground-based tele-
scopes (Wyatt 2008) surround A-type and F,G,K-type stars de-
spite several deep surveys of large samples of M stars conducted
from mid-IR to submillimeter wavelengths (Plavchan et al.
2005; Lestrade et al. 2006; Gautier et al. 2007; Lestrade et al.
2009; Avenhaus et al. 2012). Currently, among the nearby M-
stars, the only spatially resolved debris disk is around thevery
young M1 star AU Mic (Kalas et al. 2004; Liu et al. 2004;
Krist et al. 2005; Wilner et al. 2012) which has been modeled
by Augereau & Beust (2006) and Strubbe & Chiang (2006). In
addition, there are a few candidate disks with excesses above
photospheric level (e.g. Smith et al. 2006; Lestrade et al. 2006;
Plavchan et al. 2009). Finally, in the cluster NGC2547 (∼40 Myr
old and∼ 433 pc), deepSpitzer MIPSobservations have revealed
11 M-stars with 24µm excesses above photospheric level and
no excess at 70µm; these observations have been interpreted as
warm dust in debris disks (Forbrich et al. 2008).

The fact that debris disks are more seldomly observed among
M-stars than around higher-mass stars seems surprising at first,
since all spectral types have similar detection rates of proto-
planetary disks in the earlier stage of their evolution, accord-
ing to observations of low density clusters like Taurus-Auriga
andρ Oph (e.g., Andrews & Williams 2005). However, in high
density clusters like Orion, external photoevaporation byintense
FUV radiation field can severely limit the production of plan-
etesimals around low mass M-stars on a timescale shorter than
∼10 Myr (Adams et al. 2004). Another hazard for M-stars dur-
ing the first∼100 Myr is close stellar flybys, when co-eval stars
are still in the expanding cluster of their birth and strongly in-
teracting with each other. During these early close stellarflybys,
planetesimals are stripped from disks, and this is more severe for
disks around low mass stars in high stellar density clusterslike
Orion according to simulations (Lestrade et al. 2011).

Recently, Wyatt et al. (2012) have found evidence of the
prevalence of debris disks in low-mass planetary systems (also
Moro-Martı́n et al. in prep) and suggest that this correlation
could arise because such planetary systems are dynamicallysta-
ble over Gyr timescales. Recent observations show that low-
mass planets are more abundant among M-stars than around the
other stars (Bonfils et al. 2011; Howard et al. 2012). Hence, if
the correlation between debris disks and low-mass planets for
G-stars applies to M-stars, then debris disks should be relatively
common around them, in contrast to a paucity of detections.

However, debris disks around M-stars are harder to detect
than around more massive stars at the same distance simply be-
cause they are less luminous, meaning that the dust within expe-
riences significantly less heating. Therefore, to detect the same
disk around a later type star requires deeper observations.M-star
debris disks may also be less detectable because additionalgrain
removal processes are operating. For example, a physical pecu-
larity of M-stars is that they are structurally different from solar-
type stars. Their interiors have deep convective zones− fully
convective for M3 spectral type and later− that produce strong
coronal magnetic fields responsible for their optical/radio flares
and X-ray emission (Hawley et al. 2000). This activity gener-
ates also stellar winds of energetic particles (Wargelin & Drake
2001) which might dominate the circumstellar grain removal

processes for a large fraction of the star lifetime (Plavchan et al.
2005).

This paper describes observations carried out as part of
the Key Program DEBRIS (Disc Emission via a Bias-free
Reconnaissance in the Infrared/Sub-mm) on theHerschel Space
Observatory(Pilbratt et al. 2010). DEBRIS is an unbiased flux-
limited survey to search for dust emission atλ = 100 and
160µm toward the nearest∼89 stars of each spectral type
A,F,G,K,M as evidence of debris disks (see Matthews et al.
(2010) and Phillips et al. (2010) for the sample description).
For selected targets, complementaryHerschelobservations at
70, 250, 350, 500µm were also conducted. The first results
of this program have already shown that these observations
can detect disks down to much fainter levels than previously
achieved, and moreover can spatially resolve debris disks at
far-IR wavelengths (Matthews et al. 2010; Churcher et al. 2011;
Kennedy et al. 2012a; Wyatt et al. 2012; Kennedy et al. 2012b;
Booth et al. 2012; Broekhoven-Fiene et al. 2012).

As part of this survey, we have spatially resolved a disk
around the M3 spectral type star GJ 581 atλ=70, 100, and
160µm. Hence, this is the second resolved debris disk around
an M-star, but, in contrast to the star AU Mic which is young
(12 Myr, Zuckerman & Song 2004), GJ 581 is old (2-8 Gyr,
see§ 3). Also, GJ 581 is surrounded by at least four low mass
planets with minimum masses of 1.9, 15.6, 5.4, and 7.1 M⊕,
orbital radii of 0.03, 0.04, 0.07, and 0.22 AU, and eccentrici-
ties between 0.0 and 0.32, detected by radial velocity measure-
ments (Bonfils et al. 2005; Udry et al. 2007; Mayor et al. 2009;
Forveille et al. 2011). All these planets are within the tidal lock
region of this M3 spectral type star (<0.25 AU) and hence are
expected to be synchronously rotating and potentially undergo-
ing atmospheric instabilities (Wordsworth et al. 2011; Kite et al.
2011). Planets GJ 581c and d are near and in the conventionally
defined Habitable Zone (Selsis et al. 2007), respectively. The
presence of one or two additional planets in the system is de-
bated (Vogt et al. 2010; Forveille et al. 2011; Vogt et al. 2012).

In this paper, we describe theHerschel observations of
GJ 581 as well as archival MIPS and IRS data fromSpitzer, and
NICMOS data fromHSTin § 2. The stellar parameters of GJ 581
used are in§ 3. Reconnaissance of a cold debris disk around
G J581 in the three PACS images at 70, 100, and 160µm and
in the presence of background sources contaminating the field
is described in§ 4. Modeling of these images to determine the
spatial distribution of the emitting dust is described in§ 5. The
spectral energy distribution SED including the IRS spectrum of
GJ 581 and modeling of a hypothetical second component of
warm dust are described in§ 6. An upper limit on the bright-
ness of scattered light using the NICMOS image is discussed in
§ 7. Physical conditions in the disk and its relationship withthe
planetary system around GJ 581 are discussed in§ 8.

2. Observations

2.1. Herschel

GJ 581 was initially observed with PACS (Photodetector and
Array Camera & Spectrometer, Poglitsch et al. (2010)) on 11
August 2010 using the standard DEBRIS observing strategy, and
a resolved disk was tentatively detected at 100 and 160µm. We
then acquired deeper PACS images at 100 and 160µm on 29 July
2011, a PACS image at 70µm (and 160µm) on 1 August 2011,
as well as SPIRE images at 250, 350 and 500µm on 30 January
2011. These observations are summarised in Table 1.
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Table 1. Herschel observations of GJ 581.

ObsId Date Instrument Integration

1342202568 11 August 2010 PACS 100/160 890s
1342213474 30 January 2011 SPIRE 250/350/500 185s
1342224948 29 July 2011 PACS 100/160 7190s
1342225104 1 August 2011 PACS 70/160 3936s

2.1.1. PACS

The PACS observations used the mini-scan map mode with eight
legs of a 3′ length, with a 4′′ separation between legs in a single
scan direction at a rate of 20 arcsec s−1, and two scan directions
(70◦ and 110◦). These data were reduced using the Herschel
Interactive Processing Environment HIPE (Ott 2010) version 7
and implement version FM6 of the flux calibration. The data
were pre-filtered to remove low-frequency (1/ f ) noise using a
box-car filter with a width of 66 arcsec at 70 and 100µm and
102 arcsec at 160µm. This data filtering results in the source
flux density being underestimated by∼ 20± 5% as discussed
in detail by Kennedy et al. (2012a). Maps were made from these
filtered timelines using the photProject task in HIPE.

The pixel scales in the images presented in Fig 1 were set to
1 arcsec at 70 and 100µm, and 2 arcsec at 160µm, i.e., smaller
than the natural pixel scales. This enhanced sampling is possible
because of the high level of redundancy provided by the scan
map mode used but it comes at the cost of correlated noise be-
tween neighbouring pixels. We have also made images with the
natural pixel scales of 3.2 arcsec at 70 and 100µm, and 6.4 arc-
sec at 160µm to evaluate the impact on the parameter estimation
in our modeling. The noise rms for the images with the natu-
ral pixel are 0.47mJy/5.6′′beam at 70µm, 0.48mJy/6.7′′beam at
100µm, and 0.77mJy/11.4′′beam at 160µm.

2.1.2. SPIRE

Follow-up observations were taken on 30 January 2011 with
SPIRE (Spectral & Photometric Imaging REceiver, Griffin et al.
(2010)) using the small-map mode, resulting in simultaneous
250, 350 and 500µm images. The data were reduced using
HIPE (version 7.0 build 1931), adopting the natural pixel scale
of 6, 10, 14 arcsec at 250, 350 and 500µm respectively. The
noise rms are 6.1 mJy/18.2′′beam, 7.9 mJy/24.9′′beam, and
8.3 mJy/36.3′′beam at 250, 350 and 500µm, respectively, and
the image at 250µm is shown in§ 4.4.

2.2. Ancillary data

2.2.1. Spitzer

MIPS 70 µm observations of GJ 581 (AOR 22317568) were
taken on 21 August 2007 (no 24µm MIPS were taken) and
a small measured excess, with the significanceχ70 = (Fobs

70 −
F∗70)/σ70 = 3.6 in Kóspál et al. (2009) andχ70 = 2.2 in
Bryden et al. (2009) with the same data, forms a tentative
discovery. We re-reduced the archival data using an updated
pipeline and the flux calibration summarized in Gordon et al.
(2007) providing the new flux density 20.0±5.3 mJy by PSF
fitting to the image at the effective wavelength of 71.42µm
(color correction for Tdust=40 K applied : 0.891). The uncer-

1 http://irsa.ipac.caltech.edu/data/SPITZER/docs/mips/
mipsinstrumenthandbook/51/

tainty includes both statistical and calibration uncertainties and
the corresponding excess ratioχ70 is 2.7 with our estimate of
the photospheric flux density of 5.6 mJy at 71.42µm (see§ 6).
Photospheric flux densities predicted for late type stars (Kand
M) by the Kurucz or Next Gen models have been shown to be
overestimated in the mid-IR by as much as 5-10% (Gautier et al.
2007; Lawler et al. 2009). Hence, this excess can be treated as a
lower limit.

The IRS observations of GJ 581 (AOR22290432) were taken
on 31 August 2007, and the details of the data reduction are in
Beichman et al. (2006) and Dodson-Robinson et al. (2011).

2.2.2. HST/NICMOS

GJ 581 was directly imaged with HST/NICMOS on 6 May
1998 (GO-7894; PI Todd Henry). The NICMOS data and the
overall observing program are described in Krist et al. (1998)
and Golimowski et al. (2004). We reanalyzed the F110W data
for GJ 581 consisting of 128 seconds of cumulative inte-
gration on the NIC2 camera (0.076′′/pixel, 256×256 pixels).
Target stars were not placed behind the occulting spot, near-
contemporaneous observations of PSF reference stars were not
made, and multiple telescope roll angles were not employed.
Therefore the observations were not optimized for high-contrast
imaging of low surface brightness circumstellar nebulosity.
Nevertheless, we subtract the GJ 581 point-spread-function
(PSF) using observations of LHS 1876 (GJ 250B) made on 24
March 1998 as part of the same scientific program, and in so
doing, set constraints on the scattered light disk brightness as
discussed in§8. PSF subtraction techniques, including a discus-
sion of scattered light artifacts and other spurious features, are
described in greater detailed by Krist et al. (1998).

3. Stellar parameters of GJ 581

GJ 581 (HIP 74995) lies relatively nearby (6.338± 0.071 pc ;
Phillips et al. (2010)) and is classified as a star of spectraltype
M3.0 (Reid et al. 1995). Recent CHARA interferometric mea-
surements of its physical radius (0.299± 0.010R⊙) imply an ef-
fective surface temperature ofTe f f = 3498± 56K, a bolometric
luminosity of 0.01205±0.00024L⊙ and a stellar mass of 0.28M⊙
(von Braun et al. 2011).

A variety of different techniques have been discussed in the
literature as a means to determine the age of GJ 581, includ-
ing kinematics, magnetic activity (X-ray observations), chromo-
spheric activity, stellar color, metallicity and rotation. Leggett
(1992) finds that the galactic velocities of GJ 581 are interme-
diate between those typical of the young and old galactic disk
M-stars. Bonfils et al. (2005) conclude that the low limit on its
X-ray emission, the lowv siniand the weak CaII H and K emis-
sion, taken altogether, suggest that GJ 581 is at least 2 Gyr old.
Selsis et al. (2007) established anLx/Lbol versus age relation for
M- K- G- spectral type stars to estimate that the age of GJ 581
could be around 7 Gyr. Recently, Engle & Guinan (2011) have
established an age-rotation period relation for M-stars and deter-
mined an age of 5.7± 0.8 Gyr for GJ 581. Clearly, GJ 581 is an
old star well above 1 Gyr.

High contrast imaging for GJ 581 has revealed no companion
of ∼7 Jupiter masses or higher between 3-30 AU (Tanner et al.
2010). In addition, the limits provided by the HARPS radial ve-
locity measurements exclude planets that are more massive than
Jupiter with semimajor axes inside 6 AU (Fig 13 in Bonfils et al.
2011).
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All the parameters of GJ 581 are summarized in Table 2.

Table 2. Stellar parameters of GJ 581.

Parameters values references

R.-A. ICRS(2000) 15H19m27.509s Høg et al. (2000)
Dec. ICRS(2000) −07◦43′19.44′′ ”
µαcosδ −1.228′′/yr ”
µδ −0.098′′/yr ”
Galactic longitude 354.08◦ ”
Galactic latitude +40.01◦ ”
Distance 6.338± 0.071 pc Phillips et al. (2010)
Spectral type M3.0 Reid et al. (1995)
Radius 0.299± 0.010 R⊙ von Braun et al. (2011)
Mass 0.28 M⊙ ”
Bolometric lum. 1.22± 0.02 10−2 L⊙ ”
Effective temp. 3498± 56 K ”
Metallicity [Fe/H] −0.25 Bonfils et al. (2005)
v sini < 2.1 km/s Delfosse et al. (1998)
Rotation period 93.2± 1 days Vogt et al. (2010)
LogLX (ergs/s) < 26.44 Schmitt et al. (1995)
Age 2 - 8 Gyr see§ 3

4. Herschel images of GJ 581

In Fig 1, we present our deep PACS images of GJ 581 cropped
to the region±50′′ from the star. At each wavelength, the main
emission is close to the star position (image center) and thesur-
rounding field is contaminated by several other sources, detected
barely at 70µm, significantly at 100µm, and prominently at
160µm, as is expected for submillimeter galaxies in the back-
ground. The central emission is suggestive of a spatially resolved
debris disk not fully separated from the background source to
the N W. In the next subsections, we analyse quantitatively these
PACS images to verify this view.

4.1. Radial profiles of the emission in the PACS images

First, in Fig 2, we present the radial profiles of the emissionat the
three wavelengths by computing the mean brightness in ellipical
annuli centered on the peak of the main emission. At the three
wavelengths, these radial profiles show that the emission isex-
tended about this peak when they are compared to the Gaussian
profiles of a hypothetical point source in the background.

We computed these profiles after subtracting from each im-
age a PSF scaled to the photosphere flux density (Sphotosphere=

5.8, 2.8, 1.1 mJy at 70, 100 and 160µm, respectively, see§6).
The emission peak position was found to be less than 2 arcsec
from the star in each image, consistent with the pointing accu-
racy of theHerscheltelescope2. We have tested elliptical annuli
at PA =120◦ and with inclinations 0◦ (circular), 25◦, 40◦ and
75◦, anticipating that the disk may not be in the plane of the
sky. We found that all these radial profiles were more extended
than the Gaussians at the three wavelengths, and slightly more
for the inclination of 40◦. The imprint of the N W source at the
radial distance of 11 arcsec can be seen in these profiles at 100
and 160µm. We have tested the method by computing the ra-
dial profile of the emission of the South East background source
in the same way. We satisfactorily found that its profile matches
within 1σ the Gaussian expected for a point source.

2 http://herschel.esac.esa.int/twiki /bin/view/Public/SummaryPointing

The extended emission revealedby these profiles can also
be seen directly in the photosphere-subtracted images of Fig 1
(middle column), most prominently at 70µm because the pho-
tospheric flux density is highest at this wavelength.

4.2. Gaussian source fits

As a second approach to verify that the central emission is more
extended than the PSF, we fit an elliptical 2D Gaussian to each
photosphere-subtracted image with masking applied to the po-
sition of the N W source at 100 and 160µm. At 70 µm, we
found FWHM of the minor and major axes of 9.5 ± 0.7′′ and
10.7± 1.1′′; a position angle of120± 10◦; and a flux density of
18.8± 1.4 mJy after adding back in the photospheric contribu-
tion. At 100µm, we found, respectively, values of 9.9 ± 1.0′′,
13.3±0.5′′, 120±10◦, and 21.1±1.5 mJy for the minor and ma-
jor axes FWHM, the position angle, and the 100µm flux density,
after masking the N W source (all pixels in a 12′′ × 12′′ square
centered at−9′′ and+6′′ from the star). Given that the FWHM
of the PACS PSFs are 5.6′′ and 6.8′′ at these wavelengths, we
conclude that the emission is significantly extended, as already
shown by the radial profiles, and is elongated at PA∼ 120◦.

The ICRS coordinates of the 70µm Gaussian peak in this fit
are 15h 10m 25.905±0.05s and−7◦ 43′ 22.79± 0.7′′ and differ
only by 0.3′′ from the adjusted position of the 100µm Gaussian
peak. These coordinates differ by+0.66′′ and−1.48′′ from the
right ascension and declination of the star GJ 581 predictedwith
the Hipparcosastrometric parameters (Table 2). These differ-
ences are consistent with the 1σ pointing accuracy of 2′′ for the
Herscheltelescope. We conclude that the main emission in the
PACS images at 70 and 100µm is centered on the star position
within pointing uncertainty.

The 160µm image is the product of the coaddition of two
images taken independently with the PACS 70/160 and PACS
100/160 instruments only a few days apart in 2011 (Table 1).
The registration of these two images were facilitated by theneg-
ligible displacement due to proper motion over the short lapse of
time and by the fortuitously small difference of 0.3′′ between the
pointing positions of the two instruments as found above. Our
first 160µm image in 2010 was not coadded because no fea-
ture in the image could be used to check the registration since its
signal-to-noise ratio was

√
12.5 times lower. Although this first

image was crucial in our decision to observe deeper, its use or
not is inconsequential for our analysis. For the fit at 160µm, we
fixed the position of the Gaussian to the coordinates determined
at 70µm. This was necessary because the large mask (16′′×16′′

square) used for the N W source affected the independent deter-
mination of this position. The best fit 2D Gaussian parameters
were minor and major axes of 12.8± 1.5′′ and 21.5± 2′′; a posi-
tion angle of 125±10◦; and a flux density of 22.1±5.0 mJy, after
adding back in the photospheric contribution. Given the PACS
PSF at 160µm of 11.4′′, this indicates that the emission is ex-
tended at this wavelength as well.

The disk inclinations resulting from the ratios of the minor
and major axes determined above, and corrected quadratically
for the convolved PSFs, are : 33±17◦ (0◦ is face-on), 54±6◦, and
71± 7◦ at 70, 100 and 160µm respectively. Although scattered,
these values are statistically consistent, since they are within
1.5σ from their weighted mean (59◦), and indicate an inclined
disk which has implications for the masses of the planets of the
system as discussed in§ 8.3.

We note that the three major axes above, corrected quadrati-
cally for the convolved PSF, are very closely proportional to the

4



J.-F. Lestrade et al.: Resolved Disk Around GJ 581

Fig. 1. PACS images of GJ 581 cropped to±50 arcsec from the star, at 70, 100 and 160µm from top to bottom, respectively. In the
left-hand column, the raw images show that the main emission is centrally located about the star position (image center) and that
there are several point-sources in the field, barely detected at 70µm, significantly at 100µm, and more prominently at 160µm, as
expected for submillimeter background galaxies. In§4, we show that the main emission is extended and centered on the star position,
as expected for a debris disk, and mingles with a background source∼11 arcsec toward the North West. The panels in themiddle
columnare the photosphere-subtracted images. The panels in theright-hand columnshow the best subtraction (lowest residuals)
of a two-point source model, which assumes that there is no debris disk around GJ 581 but an extra background source located
exactly behind the star in addition to the N W source. This model is rejected because of the systematic residuals left, indicative of
an extended structure, especially at 70 and 100µm. At each wavelength, the contours levels of the three images are the same and
correspond to 1,2,3,9,15σ0 (σ0 = 0.0135 mJy/1′′pixel) at 70µm, 1,2,3,6,9,12,15σ0 (σ0 = 0.0094 mJy/1′′pixel) at 100µm, and
1,2,3,5,7,9,11σ0 (σ0 = 0.0251 mJy/2′′pixel) at 160µm. The coordinates of the image center provided in the labelscorrespond to
the star position at epoch of observation (July 29th - August1st 2011). The hatched circles are the beam FWHMs : 5.6, 6.8, and
11.4 arcsec at 70, 100, and 160µm, respectively.

wavelength, suggesting that the disk is radially broad since emis-
sion at longer wavelength probes colder dust, more distant from
the central star.

The flux densities from our fits above have been scaled up to
account for the flux removed by the data filtering during the re-
construction of the images; the correction factors are 16, 19 and
21% with an uncertainty of 5% estimated for point sources in
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Fig. 2. Radial profiles of the mean brightness of the photosphere-subtracted images. Each point of these curves was computed as the
mean of the emission in an elliptical annulus centered on thepeak of the main emission close to the image center. They correspond
to an axisymmetric disk model inclined to 40◦ relative to the plane of the sky (see text). They are one pixelwide, i.e.1 arcsec in the
70 and 100µm images and 2 arcsec in the 160µm image. The Gaussian with the FWHM of the beam is the profile expected for a
hypothetical point source in the background aligned by chance with the star and shown for comparison.

the DEBRIS survey by Kennedy et al. (2012a). The uncertainty
of each PACS flux density determined above is based on the
quadratic sum of the statistical uncertainty in our Gaussian fit,
the absolute flux calibration accuracy of 3% at 70 and 100µm,
and 5% at 160µm, provided by theHerschelproject3, and the
5% uncertainty of the correction factor for the data filtering. The
uncertainty of the flux density at 160µm is formally 2 mJy with
this calculation but our fit depends to some degree on the posi-
tion of the mask applied for the N W background source. So we
have increased this uncertainty to 5 mJy at this wavelength based
on several fits with different masks.

4.3. Considering the superposition of two point-sources

As a final test, we consider the possibility that the extendedemis-
sion in the central part of the image could be caused by the su-
perposition of two backgound sources instead of a disk. To this
end, we subtracted two PSFs from each PACS image (in addi-
tion to subtracting the phostospheric emission), adjusting their
flux densities in order to remove as much emission as possible.
The first PSF was located at the position of the N W source,i.e.
at −9′′ and+6′′ from the star, and the second was tested at six
locations ; the star position itself, as well as a half FWHM tothe
North, South, East and West of the star, and half way between
the star and the N W source. The lowest residuals were found
after removing 1.4, 2.9 and 6.6 mJy for the first PSF at 70, 100
and 160µm, respectively, and 4.9, 6.9 and 9.4 mJy for the second
PSF at the star position at 70, 100 and 160µm, respectively. Note
that these latter flux densities are free of the photosphere contri-
butions estimated in§ 6.1. Despite this removal process, there
is still significant structure left in the residual images shown as
thetwo-point source subtracted imagesin Fig 1 (right-hand col-
umn). This structure can be best explained as resulting fromthe
extended emission of the disk incompletely removed by this pro-
cess. Hence, we conclude that this test rejects the possibility that
the superposition of two background point sources can be re-
sponsible for the central emission.

We elaborate further by discussing the probability to find
such contaminant sources in the field and their spectra. First,
the probability to have one background source stronger than
6.6 mJy at 160µm within 11′′ from the star is 18 %, and to

3 http://herschel.esac.esa.int/twiki /pub/Public/PacsCalibrationWeb/

have two is only 1.8% by using the Poisson probability distri-
bution with the mean source surface density N(S > 6.6mJy)∼
4000 sources/deg2 at 160µm provided by the Herschel PEP sur-
vey (Berta et al. 2011) (see also Sibthorpe et al. (2012)). Second,
the spectra of these test sources removed from the images may
or may not be physical. The flux densities removed at the
N W source position (1.4, 2.9 and 6.6 mJy at 70, 100 and 160µm
respectively) are consistent with the spectrum of a galaxy at
z> 1.5 according to Fig 4 of Blain et al. (2002) valid for a typi-
cal high-z galaxy enshrouded in dust (∼ 38 K, L ∼ 5× 1012L⊙)
and radiating in the far-IR and submm. However, the flux densi-
ties removed at the star position (4.9, 6.9 and 9.4 mJy at 70, 100
and 160µm respectively) above the photospheric levels make the
ratio S100µm/S70µm lower than expected for a galactic spectrum
according to that work.

4.4. SPIRE images

The SPIRE image at 250µm in Fig 3 shows an elongated struc-
ture at PA∼ 120◦ which has two peaks at the 2σ level that match
the positions of the star and the N W source. This structure is
also extended to the S E. Although this structure is of low sta-
tistical significance, it is consistent with the emission detected at
the PACS wavelengths. The two other SPIRE images, at 350 and
500 µm, are dominated by noise and no reliable structure can
be recognized. A 2D Gaussian could not satisfactorily modelthe
emission at 250µm, and so we carried out photometry with an
aperture of 36 arcsec and measured a flux density of 24± 6 mJy.
This flux density is considered an upper limit for the disk since
its emission is blended with that of the N W source.

4.5. Spitzer MIPS image at 70 µm

A SpitzerMIPS image at 70µm was made on 21 August 2007,
four years before our PACS image (1 August 2011). We fit a
Gaussian with the FWHM of 19 arcsec (70µm MIPS beam)
to the emission of the MIPS image and found the coordinates
of the Gaussian peak to be atα = 15h 10m 26.08±0.17s and
δ = −7◦ 43′ 23.2 ± 2.5′′ in the ICRS system. The relatively
high noise of the MIPS image did not permit a solution for
the FWHM. The differences in the coordinates compared with
our 70 µm PACS position given in§ 4.2 are∆α = −2.56′′

and∆δ = +0.45′′ (PACS minus MIPS) with an uncertainty of
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Fig. 3. SPIRE image of GJ581 at 250µm. Pixel size is 6′′ and
the contour levels are 1 and 2σwithσ= 6.1 mJy/18.2′′beam. The
star symbol is the position of GJ 581 at the date of observation.

3.3′′ when combining the astrometric uncertainty of the MIPS
Gaussian fit (2.5′′ in both coordinates) and the pointing accura-
cies of 2′′ for Herschel and of 1′′ for Spitzer4. The predicted
displacement of GJ 581 between the two epochs of observations
is∆α = −4.98′′ and∆δ = −0.41′′ computed with the proper mo-
tion in Table 2. Hence, the coordinate differences of the 70µm
emission measured between the two epochs are compatible with
this prediction but the star has not moved sufficiently between
these epochs for us to confirm that the 70micron emission is co-
moving with the star at a statistically significant level.

5. Modeling the PACS images of GJ 581

5.1. Parametrized model

We fit a parametrized model of the disk to the PACS images.
The model is axisymmetric and truncated by the inner radiusr in

and the outer radiusrout which are free parameters in our fit. Its
dust emission is optically thin, and the flux density from each
element (k, l) of the grid covering the disk is

∆Sk,l = ǫBν(T(rk,l)) . Σprαk,l . ∆a/d2, (1)

whereBν(T(rk,l)) is the Planck function that depends on the grain
temperatureT(rk,l) at the radial distancerk,l from the star,∆a
is the area of the element in the grid,d is the distance to the
star, andΣp is the coefficient of the power-law (e.g. Wyatt et al.
1999) 5. To fit individually each PACS image in§ 5.2, we set
the factorǫ to unity in eq (1). To fit simultaneously the three
PACS images atλ = 70 µm, 100µm, and 160µm in § 5.3, we
implement a grey body effect (e.g. Dent et al. 2000) by settingǫ
to unity if λ < λ0, andǫ = 1.0× (λ0/λ)β if λ > λ0, whereλ0 and
β(> 0) are free parameters in our fit.

In our model, no assumption is made for the size distribution
of the grains, their mineralogical composition and porosity. The
thermal structure of the disk is taken as

T(r) = fT . TBB(r), (2)

where fT is a scaling factor applied to the black body tempera-
tureTBB(r) = 278. (L/L⊙)0.25 . (r/1AU)−0.5 (K), and is a free pa-

4 http://irsa.ipac.caltech.edu/data/SPITZER/docs/spitzermission/
missionoverview/spitzertelescopehandbook/12/

5 There is a different but equivalent derivation of the flux density
given in Zuckerman (2001) based on the surface emittanceπBν.

rameter in our fit. Here we illustrate how to interpret this param-
eter using a simplified model of the absorption and reemission
of the starlight by the grains. For dust with the absorption and
emission efficienciesQabs and Q, a straightforward derivation
shows thatfT = (Qabs/Q)1/4 for a grain at thermal equilibrium,
ignoring that these efficiencies should be averaged over the spec-
trum of incoming and outgoing radiation, and integrated over the
dust size distribution. If we assume that grains larger than1 µm
absorb starlight with the efficiency Qabs = 1 and reemit it at
longer wavelengths at the lower efficiencyQ, then the simple in-
terpretation is thatfT is directly related to the emission efficiency
through the relationshipfT = Q−1/4.

The termΣprα in eq (1) is the emitting cross-sectional area of
the grains per unit area of the disk surface. These grains arespa-
tially distributed according to a radial profile taken as thepower-
law Σprα, and their total cross-sectional area isA. Since these
grains reemit with the efficiencyQ, their total emission is pro-
portional toQ . A =

∫ rout

r in
2πrdrΣprα. Hence, ifα , −2, the

coefficient of the power-law is

Σp = f −4
T . A . (α + 2) / (2π (rα+2

out − rα+2
in )), (3)

and the total cross-sectional areaA and the power-law indexα
are free parameters in our fit6. Grains smaller than 1µm are
not important because they emit so inefficiently that their flux
density is negligible (Bonsor & Wyatt 2010).

The total cross-sectional areaA can be converted into mass
assuming a size distribution and a mass densityρ for the ma-
terial. Adopting the standard size distributionn(D) ∝ D−3.5 for
spherical particles of diameterD betweenDmin and Dmax, the
corresponding mass is

md = (2/3) . A . ρ .
√

Dmin .
√

Dmax. (4)

This model is complemented with a point source photo-
sphere centered on the image by two free parameters (coordi-
natesxc andyc) and having the flux densities estimated from the
Next Gen stellar atmosphere model in§ 6 but lowered by∼ 20%
because of the data filtering used to reconstruct the images as
already mentioned in§ 2.1.1. This model is projected onto the
sky with the inclinationi and the node orientationΩ, and finally
convolved by the telescope PSF provided by the PACS images of
the reference starα Boo at 70µm, 100µm and 160µm. Hence,
our model has 9 free parameters (r in, rout, α, fT ,A, i,Ω, xc, yc).

The best fit is found by minimizing

χ2
ν =
∑

k

∑

l

(Ok,l −Ck,l

σ0

)2
, (5)

computed with the residuals between the image (O) and the
model (C) over all the pixels of the image, and assuming
the same measurement uncertaintyσ0 for all the pixels. To
compute the model, we used a grid on the sky which has a
resolution of 0.5” at 100µm and 70µm, and 1” at 160µm,
i.e. twice as fine as the pixel size of the images of Fig 1, and
has dimensions 128× 128 at 70 and 100µm, and 64× 64
at 160 µm. These dimensions can accommodate the largest
disk model tested (rout=150AU) extended by twice the beam
FWHM. This sky grid is the same for all the models tested so
that the number of degrees of freedomν is the same for all
of them. To use theχ2

ν probability distribution to discriminate
between them, we carefully estimate thea priori uncertaintyσ0

6 if α = −2,Σp = f −4
T . A / (2π (ln(rout) − ln(r in)))
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Table 3. Best fit models of the disk for each individual image and for the combined fit.

image(s) χ2
ν ν a A b r inner router

c α fT i d Ω e

(AU2) (AU) (AU) ( ◦) (◦)
lower (formal)

70µm 1.04 408 0.8± 0.5 25+20
−14 ≥ 40 (62) −2 ≤ α ≤ 0 4.0+0.5

−1 ≤ 60 120± 20

100µm 0.99 408 2.2± 1.2 31+22
−14 ≥ 55 (100) −2 ≤ α ≤ 0 3.5+0.5

−1 ≤ 60 110± 20

160µm 0.97 90 1.5± 0.7 37+18
−12 ≥ 90 (145) −2 ≤ α ≤ 0 4.5+0.5

−1 40< i < 80 120± 20

Combined 1.03 922 2.3± 1.1 25+12
−12 ≥ 60 (110) −2 ≤ α ≤ 0 3.5+0.5

−1 30< i < 70 120± 20

a : based on the number of natural pixels (the natural pixel is∼ 3 times larger than the pixel in the images shown).
b : A is the total cross-sectional area of all the grains (see§ 5.1)
c : lower limit (see text) and, in parenthesis, the formal value corresponding to the minimumχ2

ν given.
d : i = 0◦ is face on.
e : Ω > 0 is E of N

by computing the noise rms over the image limited to the sky
grid dimensions and after excluding the central part (r < 25′′)
where the disk emission is located. For GJ 581, the noise rms,
σ0, is 0.0135mJy/1′′pixel at 70 µm, 0.0094mJy/1′′pixel
at 100 µm, and 0.0251mJy/2′′pixel at 160 µm, corre-
sponding to 0.49mJy/5.6′′beam, 0.50mJy/6.7′′beam, and
0.81mJy/11.4′′beam, respectively, by using the beam area
π × FWHM2/4 ln 2.

Finally, we used the SPIRE 3σ upper limits as a constraint to
reject any model with a flux density of the dust emission larger
than 24 mJy at 250µm.

5.2. Fits of individual PACS images

First, we searched for the best fit model for each individual im-
age. The ranges of the model parameters tested were:A of 1 to
20 AU2; r in of 3.1 to 80.0 AU;rout of r i to 150.0 AU;α of -3.0 to
0.0; fT of 1.0 to 6.0;i of 0.0 to 90.0◦ (0.0◦ is a disk seen face-on);
andΩ of 0.0 to 180.0◦ (0.0◦ is North and increasingΩ is East).
The range for the indexα was chosen to cover possibilities such
as grains being blown out of the system by radiation pressure
(α = −1), and having a distribution akin to that of the Minimum
Mass Solar Nebula (MMSN) (α = −1.5), as discussed in the
modeling of the disk around the A-starβ Leo by Churcher et al.
(2011). The two background sources, N W and S E of GJ 581,
were masked as shown in the residual maps of Fig 4. Roughly
50 million models were tested in our search for the best fit.

We found the reducedχ2
ν = 1.04, 0.99, and 0.97 for the best

fits to the three images at 70, 100, and 160µm, respectively. The
numbers of degrees of freedom areν = 408 at 70 and 100µm,
andν = 90 at 160µm. These reducedχ2

ν indicate noise-like post-
fit residuals according toχ2-statistics. The residual maps in Fig 4
do not show any systematic residuals as expected in these con-
ditions. We stress that the uncertaintyσ0 used for eq (5) is the
value determineda priori and is not purposefully tweakeda pos-
teriori to make the reducedχ2

ν close to unity.
The best fit values of the parameters are in Table 3. There

are significant correlations between parameters, especially be-
tweenA, α, router and fT , as we found by inspecting the two-
dimensional projections of theχ2

ν hypersurface,e.g. Fig 5 for
the pair A and fT . To estimate the parameter uncertainties in
these conditions, we have determined the lower and upper limits
around the best fit value of each parameter that correspond tothe

fits in which the reducedχ2
ν are increased to 1.12 and 1.25 with

all the other parameters freely adjusted. These thresholdscor-
respond to a probability of 5% inχ2

ν-statistics that the reduced
χ2
ν of pure noise exceeds 1.12 and 1.25 for the number of de-

grees of freedomν = 408 and 90, respectively. This is a stan-
dard criterium in fitting procedures. We have also inspectedthe
corresponding residual maps and noticed nascent systematics for
these degraded fits as expected. For the outer radiusrout, only the
lower limits and the best fit values of the fits are given in Table
3 because the upper limits are not well constrained since any
distant dust becomes very cold, even accounting for the incident
interstellar radiation field as a source of heating (Lestrade et al.
2009, Fig A1). The resulting range forr in androut does not per-
mit a conclusive estimate of the radial breadth of the GJ 581
disk.

5.3. Combined fit of the three PACS images

In order to consolidate these results and to break correlations
between parameters, we combined the three PACS images atλ =

70, 100, and 160µm in a single fit by setting the factorǫ of
eq. (1) to unity ifλ < λ0 and toǫ = 1.0 × (λ0/λ)β if λ > λ0,
in order to implement a grey body effect. Our search covered
successively the combinations ofβ = 0.0, 0.5, 1.0, 1.5, 2.0 and
λ0 = 70 µm, 85µm, 130µm. The ranges of the other model
parameters tested were the same as for the individual imagesin
§ 5.2. The two background sources were masked. Note that the
160µm image with 4 times fewer pixels has a lower weight than
the two other images in this combined fit.

The best fit has the reducedχ2
ν of 1.03 (ν= 922) forβ = 0,

indicating formally no grey body effect forλ0 < 160µm and so
a disk dominated by large grains. However, there is a high cor-
relation betweenα and the pair (β, λ0) so that these parameters
cannot be properly constrained in reality. In fact, in the discus-
sion below, we argue that small grains should be abundant in
the disk by comparing timescales of collision and removal pro-
cesses. The best fit values of the other parameters are in Table
3 and their uncertainties were determined as described in§ 5.2.
The total cross-sectional area of the dustA = 2.3 AU2 can be
converted to the dust massmd = 2.2× 10−3

√
Dmax/10 cm inM⊕

for a collisional cascade, using eq(4) withρ = 1.2 g/cm3 for
icy grains andDmin = 1 µm. The maximum diameterDmax is
unconstrained although objects larger than 10cm contribute neg-
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Fig. 4. Maps of residuals for the best fit models of the disk to the PACSimages at 70, 100, and 160µm from left to right. The post-fit
residuals are between±3.5σ0, coded as black, blue, orange, yellow and white over this range (σ0 is the same noise rms as used for
contours in Fig 1 but the color scale is not the same as in Fig 1). In zooming the electronic version, the contours apparent in these
maps are -3, -2, -1, 1, 2, 3σ0, (dashed contours are negative levels). The two backgroundsources are masked in the 100 and 160µm
images as the dotted squares show.

ligibly to the emission at the wavelengths considered in this pa-
per. Nonetheless, the size distribution probably extends beyond
10 cm as discussed in§ 8.2. The inclination could be anywhere
within a relatively broad range (30◦ < i < 70◦) that matches the
purely geometrical determination based of the ratio of the major
and minor axes of the Gaussians fit to the central emission in
§ 4.2. The inner radius is 25± 12 AU potentially providing an
indication of the scale of the planetary system around GJ 581. In
a similar way to the fits of the individual images, we cannot dis-
tinguish between a relatively narrow ring and a disk extending
beyond 100 AU with this combined fit. The best fit value offT is
3.5+0.5
−1.0, making the dust temperature between 50 and 30 K over

the extent of the disk, despite the low luminosity of GJ 581. This
factor is partially correlated withA as shown in Fig 5 but it is
clearly inconsistent with unity as we have established by forcing
fT = 1.0 in the model and found a reducedχ2

ν as high as 1.92
for the best fit with this constraint. An emission model including
a grain size distribution instead of a fixedfT as in our current
model would be more realistic, but this can be best implemented
only if the SED is finely sampled spectroscopically from mid-IR
to submm (e.g. Lebreton et al. 2012).

5.4. Model with a Gaussian profile for the grain surface
density

Finally, instead of a power law for the radial distribution of the
grain surface density, we tested a Gaussian profileΣg exp(−0.5×
((r − rg)/wg)2) peaking at radiusrg and having FWHM of
wg × 2

√
2 ln 2. The sky grid for the model, the calculation of

χ2
ν, and the ranges of model parameters tested forA, fT , i, andΩ

were as in§ 5.2. Values ofrg ranged from 2×wg to 150AU, and
wg ranged from 3.1AU torg/2 (the Gaussian profile is truncated
to 2wg toward the star). We modeled the three PACS images indi-
vidually and in combination. The resulting best fits have reduced
χ2
ν of 1.03, 0.94, and 1.05 at 70, 100, and 160µm, and of 1.04

for the combined images withβ = 0 (no grey body effect). The
residual maps are featureless. These best fits are statistically in-
distinguishable from those with the power law presented in§ 5.2
and 5.3. The resulting parameters are :rg = 52±15AU, FWHM=
38± 15AU, A = 2.5± 1.2 AU2, fT = 3.0± 0.5, i < 60◦, and
Ω = 120± 20◦.

In this model, the inner part of the system is populated with
dust making the inner radius determined with the power law sur-
face density in§ 5.3 less definitive.

Fig. 5. Map of the reducedχ2
ν showing the correlation between

the temperature factorfT and the total cross-sectional areaA of
the dust. The minimumχ2

ν is the white region in this map.

6. The SED and IRS spectrum of GJ 581

We present the SEDs of the star GJ 581 and modeled dust emis-
sion that we used to determine the fractional dust luminosity
Ldust/L∗ ∼ 10−4 of the disk. The archival IRS spectrum shows
a marginally significant excess above the photospheric level that
provides additional constraints on the dust emission. However,
we show that a single cold disk model and a two component
disk model cannot be distinguished to explain this 2-σ excess.

6.1. The SED and the fractional dust luminosity of the disk

The photometry data collected for the SEDs are summarized
in Table 4. The flux densities have been color corrected when

9



J.-F. Lestrade et al.: Resolved Disk Around GJ 581

Fig. 6. SED of the cold disk model. TheLeft-hand figureshows the best fit to the three PACS images only (χ2
ν = 1.03, Table 3). The

Right-hand figureshows the best fit to both the three PACS images and the IRS spectrum ((χ2
PACS+ χ

2
IRS)/2 = 1.05). The modeled

cold dust emission is thebluecurve, the Next Gen stellar atmosphere spectrum is thegreycurve, and their sum is thegreencurve.
The IRS spectrum is inred. The upper inset zooms on the IRS wavelengths and displays spectra asSν × (λ/24)2 on a linear scale for
clarity. The lower inset zooms on the three PACS bands. In theleft-hand figure, the best fit model satisfactorily fits the PACS data
as shown by the lower inset but misses the IRS data as shown by the upper inset. In the right-hand figure, the best fit model partially
misses the PACS data but satisfactorily fits the IRS data.

required7. The SED of GJ 581 is based on the NextGen stel-
lar atmospheric model (Hauschildt et al. 1999), with the value
log(g)=5.0 and the effective temperature 3500 K, fit to the
Johnson UBV and Cousins RI photometry, the JHKs photom-
etry from 2MASS, and the recent photometry from AKARI and
WISE. Note that the flux densities of the photosphere used for
our modeling in§ 5 were predicted from this fit (5.8, 2.8 and
1.1 mJy at 70, 100 and 160µm, respectively). In Fig 6 (left-hand
panel), we show this SED for the star and the SED for the dust
emission from our modeling. The fractional dust luminositywas
determined by integrating the SED of the dust emission and is
Ldust/L∗ = 8.9×10−5. This value is consistent with the fractional
dust luminosityQabs . A / 4π.r2 = 9.9× 10−5 determined from
the cross-sectional area of the grainsA = 2.3 AU2 from our fit
in Table 3, using the mean disk radiusr = (25+ 60)/2 = 43 AU,
and assuming the absorption efficiencyQabs = 1 for the grains
larger than 1µm. The agreement between these two indepen-
dent determinations of the fractional dust luminosity provides a
self-consistency check of our modeling. This fractional dust lu-
minosity is higher than that of the Kuiper Belt by several orders
of magnitude.

6.2. IRS spectrum

6.2.1. Synthetic photometry

The SpitzerIRS spectrum is superimposed on the star’s SED
in Fig 6. As is standard with IRS spectra, the short wavelength
module SL (7.6 − 14.2 µm) has to be adjusted to the predicted
photosphere, and IRS flux densities were scaled up by the factor
1.066 for GJ 581. In Fig 6 and insets, a small excess is apparent
above the photospheric level at the longest wavelengths of the
spectrum (module LL1 : 20.4− 34.9 µm).

We have carried out synthetic photometry with a rectan-
gular bandpass between 30 and 34µm and between 15 and
17µm which gives the widest wavelength range while still inside

7 http://herschel.esac.esa.int/twiki /pub/Public/PacsCalibrationWeb/
cc report v1.pdf

of the Long-Low IRS module as prescribed in Carpenter et al.
(2008, 2009). We computed the synthetic flux densitiesS31.6µm =

32.3± 1.9 mJy (IRS) and 28.4 mJy (Next Gen) yielding the 2σ
excess 3.9 ± 1.9 mJy, andS15.96µm = 110.7 ± 0.85 mJy (IRS)
and 109.2 mJy (Next Gen) yielding the lower significance ex-
cess 1.5± 0.85 mJy. We computed these synthetic flux densities
as the weighted mean of the data points in these bands, and using
the same weights for the corresponding Next Gen synthetic flux
densities. The IRS flux density uncertainty includes an absolute
calibration error of 6%. Photospheric flux densities predicted for
late type stars (K and M) by the Kurucz or Next Gen models
have been shown to be overestimated in the mid-IR by as much
as 3-5% (Gautier et al. 2007; Lawler et al. 2009). Hence, the sig-
nificance of the marginal excess at 31.6µm is likely higher in re-
ality. If real, this excess for the mature M-star GJ 581 is notable
because, even among A-type and solar-type stars, 24µm ex-
cesses are less frequent than 70µm excesses and decrease with
age (Rieke et al. 2005; Trilling et al. 2008; Löhne et al. 2008).
In the next two sections, we investigate the implications for the
system around GJ 581 if this excess is real.

6.2.2. Modeling the IRS and PACS data with the cold disk
model

First, we fit the single cold disk model of§ 5 simultaneously
to the three PACS images and the IRS spectrum, minimizing
χ2

tot = (χ2
PACS + χ

2
IRS)/2 whereχ2

PACS andχ2
IRS are the reduced

χ2
ν for the PACS and IRS data, respectively. With this definition,

both data sets have the same weight in the fit. The best fit model
thus obtained is characterized byχ2

tot = 1.18, resulting from
χ2

IRS = 1.25 andχ2
PACS = 1.11, and its SED is shown in Fig 6

(right-hand panel). The main parameter changes arefT = 5.5
and A = 0.8 AU2, instead of fT = 3.5 andA = 2.3 AU2 in
Table 3. This value ofχ2

tot is higher thanχ2
ν = 1.03 of the best fit

in this Table and is high for the number of degrees of freedom
of 1186 inχ2-statistics (probability= 1% of pure noise). It is
instructive to compare the SEDs of these two fits in Figure 6 ;
the simultaneous fit to the PACS and IRS data in the right-hand
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Fig. 7. SED of the best fits of the cold disk and warm belt mod-
els. Thegreen curve corresponds to the warm and cold dust
emissions added to the Next Gen stellar atmosphere spectrum
(grey). IRS spectrum is inred. We also show separately the
best fit of the warm belt emission (rw = 0.2 AU and mw =

2.8×10−6 M$) (yellow) and the best fit of the cold disk emission
(parameters of the combined fit are in Table 3) (blue). Insets and
photometric data points are the same as in the legend of Fig 6.

panel does appear to be skewed to some degree. The assump-
tion in our current model that the temperature does not depend
on grain size and wavelength is a limitation. A size distribution
would broaden the SED, and it may improve the ability to fit a
single disk model to the flux densities of the IRS spectrum and
the PACS bands simultaneously.

6.2.3. Modeling the IRS and PACS data with a two
component model

We explore another possibility, a two component model in which
a belt of warm dust is added to our cold disk model of§5. The
model of this belt is simply based on blackbody grains (i.e.,we
set fT = 1 for the warm component) located at radiusrw and
having a total cross-sectional areaAw. This two parameter model
is fit to the IRS spectrum alone by minimizingχ2

IRS. We found
rw = 0.2 AU (Tdust = 191 K) andAw = 7 × 10−5 AU2, giving
a corresponding dust mass ofmw = 2.8 × 10−6 M$, assum-
ing the standard grain size distribution (∝ D−3.5) between 1µm
and 1 mm-sized particles andρ = 3 g/cm3 (noting the depen-
dence of this estimate on the unknown maximum size given in
eq. 4). However, acceptable fits could also be found forrw be-
tween 0.05 AU (Tdust= 382 K) and 0.4 AU (Tdust= 135 K), en-
compassing the orbital radii of the planets GJ 581c and GJ 581d.
The IRS data alone cannot constrainfT but if this parameter were
larger than unity, the dust would bef 2

T times further out than the
rw quoted above for the correspondingTdust. The SED of the
two component model is shown in Fig 7 where we had to de-
crease the cold dust cross-sectional areaA by 6% from its value
of Table 3 to account for the warm dust contributions to the flux
densities at 70, 100 and 160µm. The fractional dust luminosity
is Ldust/L∗ = 5.7 × 10−5 for this warm belt shown in yellow in
Fig 7. Such a belt is comparable to the warm disk around the
K0 star HD69830 (Lisse et al. 2007). However, the proximity of
the warm dust to the known planets suggests that it could be dy-
namically unstable (e.g. Moro-Martı́n et al. 2007). Nevertheless,

definitive proofs are still missing to establish the realityof this
warm belt in the GJ 581 system.

Table 4. Photometry of GJ 581

Wavelength Sν References
(µm) (mJy)

0.36 8.3± 2 Hipparcos (Koen et al. 2010)
0.44 61± 10 (′′)
0.55 222.7± 3 (′′)
0.66 523.1± 13 (′′)
0.81 1490± 14 (′′)
1.23 3317± 82 2MASS (Cutri et al. 2003)
1.66 3939± 120 (′′)
2.16 3051± 65 (′′)
9.0 322± 18 AKARI (Ishihara et al. 2010)

11.6 213± 19 WISE (Wright et al. 2010)
22.1 61.2± 6 (′′)
70.0 18.9± 1.4 PACS this work

71.42 20.0± 5.3 MIPS (*)
100.0 21.5± 1.5 PACS this work
160.0 22.2± 5.0 (′′)
250.0 < 24 a SPIRE this work
350.0 < 26 (3σ) (′′)
500.0 < 27 (3σ) (′′)

1200.0 < 2.1 (3σ) MAMBO (Lestrade et al. 2009)

Color correction factors : 1.125 for AKARI, 0.956 for WISE at
11.6µm, 0.987 for WISE at 22.1µm, and 0.992, 0.980, 0.995 for PACS
(T=40 K) at 70.0, 100.0, 160.0µm, respectively.
(*) : not used in the fit.
a : see§ 4.4.

7. Brightness limit on scattered light around GJ 581

Our HST/NICMOS F110W image of GJ 581 after PSF subtrac-
tion (Fig. 8) is sensitive to a region from 4′′ radius (30 AU)
to approximately 10′′ radius (62 AU) along PA=120 degrees.
We estimate the 3σ sensitivity to nebulosity in this region as
ΣF110W = 18.7 mag arcsec−2. We used the radiative transfer code
MCFOST (Pinte et al. 2006) to produce synthetic F110W de-
bris disk images for pure astronomical silicate and pure wa-
ter ice models that match the SED based on the geometry de-
rived in Table 3, using the standard F110W NICMOS through-
put. The maximum surface brightnesses in the 4− 10′′ range
at the forward scattering peak for pure water ice grains and
for pure astronomical silicates are∼ 19.4 mag arcsec−2 and
∼ 21.2 mag arcsec−2 , respectively. Hence, our dust models
are consistent with the non-detection of scattered light around
GJ 581, but show that the disk may be detectable in deeper ob-
servations.

8. Discussion

We have spatially resolved a disk around the mature M-star
GJ 581 hosting four planets. This cold disk is reminiscent of
the Kuiper Belt in the Solar system but it surrounds a low mass
star (0.3 M⊙) and has a much higher fractional dust luminosity
Ldust/L∗ of ∼ 10−4. It shows that debris disks can survive around
M-stars beyond the first tens of Myr after the protoplanetarydisk
disperses, and they can be detectable although they have been
elusive in searches so far.
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Fig. 8. HST/NICMOS F110W image of GJ 581 (North is up,
East is left). The star was not placed behind the occulting spot
available on the NIC2 camera. We subtracted the PSF using
observations of GJ 250B made earlier in the same scientific
program, as described in Krist et al. (1998). The circular black
digital mask has 4′′ radius (30 AU) and blocks the central re-
gion where PSF subtraction artifacts are significant. Alongthe
position angle of the disk (PA=120 degrees) the field of view
is limited to approximately 10′′ radius (62 AU). We estimate
the 3σ sensitivity to nebulosity in the 4′′-10′′ radius region as
ΣF110W = 18.7 mag arcsec−2. Lack of detectable scattered light
at this level is consistent with the dust model derived from the
far-IR PACS images.

8.1. Dust temperature in the cold disk

The factorfT is significantly larger than unity in our analysis and
indicates that the dust temperature ranges from∼ 50 to∼ 30 K
from the inner to the outer radius of our modeled disk. This is
about three times the black body equilibrium temperature for
the dust around this low luminosity M3-type star. Values offT
larger than unity have also been found for the debris disks around
the G-type star 61 Vir (Wyatt et al. 2012) and several A-type
stars (Booth et al. 2012). This is akin to disks resolved in scat-
tered light which tend to be more extended than their sizes es-
timated from blackbody SED (Rodriguez & Zuckerman 2012).
ValuesfT > 1 are interpreted as evidence for dust grains of small
sizes and/or optical properties different from blackbody spheres
(Backman & Paresce 1993; Lisse et al. 2007; Bonsor & Wyatt
2010). When the SED of a debris disk is finely sampled spectro-
scopically from mid-IR to submm, a parameter search for com-
position, structure, size distribution of the grains can becon-
ducted usefully (e.g. Lebreton et al. 2012). Such a parameter
search would be degenerate for GJ 581 because of its limited
photometry, and so these effects have been reduced to the single
parameterfT in our model.

8.2. Collision, Poynting-Robertson and stellar wind time
scales for the GJ 581 system

In addition to gravitational forces, dust dynamics is controlled
by radial forces (radiation and stellar wind pressures) andby
tangential forces (Poynting-Robertson and stellar wind drags).
For large dust grains, these perturbing forces act on much longer
timescales than collisions, and such grains simply orbit the star
until they are broken into smaller fragments in collisions with

other grains. This results in a collisional cascade with a size
distribution with a characteristic slopen(D) ∝ D−7/2 (assum-
ing dust grain strength is independent of size). For small dust
grains, perturbing forces truncate (or at least significantly de-
plete) the size distribution at scales where one of the perturb-
ing force timescales is shorter than the collisional lifetime (e.g.
Wyatt et al. 2011). To ascertain the process dominating the dust
removal requires a comparison of the relevant timescales.

Fig. 9 shows the ratioβ of the radiation pressure to stellar
gravity experienced by icy dust grains of different sizes. This
peaks for sizes comparable to the wavelength where the stellar
spectrum peaks and is also proportional toL∗/M∗, whereL∗ and
M∗ are the luminosity and mass of the star (Gustafson 1994). The
low luminosity of GJ 581 means thatβ < 0.5 for all icy grains
regardless of size, and the same is true for other compositions.
Since dust withβ < 0.5 that is created in collisions is always
placed on a bound orbit, this means that radiation pressure is
not a mechanism that can be invoked to expel the dust from the
system (Wyatt et al. 1999).

Fig. 9 also shows the ratioβsw of the stellar wind pressure
to stellar gravity (Gustafson 1994). This depends on the stel-
lar mass loss rate and stellar wind speed that are poorly under-
stood and hard to measure for M-stars. Here we estimate the
mass loss rate from the non-detection of X-rays from GJ 581
by ROSAT implying logLx < 26.44 erg/s (Schmitt et al. 1995).
The correlation between X-ray surface flux and mass loss rateof
GKM-type stars (Wood et al. 2005) then yields the upper limit
of 2 Ṁ⊙, where the solar mass loss rateṀ⊙ = 2×10−14 M⊙ yr−1.
We also consider the stellar wind speed to be∼400 km/s as ap-
propriate for GKM-type stars (Wood 2004). Finally we assumed
100% efficiency of momentum coupling between dust and the
stellar wind (and used eq. 12 of Plavchan et al. (2005)). With
these assumptions we found thatβsw can only be> 0.5 for
dust smaller than a few nm, meaning that stellar wind pressure
could only truncate the collisional cascade below the nm-scale;
furthermore, stellar wind pressure would be ineffective if small
grains couple inefficiently to the stellar wind (e.g. Minato et al.
2006).

A comparison of timescales first requires an estimation of
the collisional lifetime of dust grains of different sizes. Here we
use eq. 4 and the parameters for the disk found from the mod-
eling of the combined images presented in Table 3 to derive the
total massMtot = 2.2 × 10−3

√
Dc/10 cm in M⊕, assuming the

standard size distribution betweenDmin =1 µm and the diameter
Dc of the largest objects and the densityρ = 1.2 g/cm3 for icy
grains. The collisional lifetime is estimated using eq. 16 of Wyatt
(2008) with the additional assumptions that dust orbital eccen-
tricities are 0.05 and that their strength is 103 J/kg (independent
of size so as to be consistent with the assumptions about the size
distribution). The resulting collisional lifetime is 0.22

√
D Myr,

whereD is in µm. Since we expect the cascade to extend up to
sizes for which their collisional lifetime is equal to the age of the
star (∼ 5000 Myr), then as long as our assumptions apply up to
large sizes we can get a rough estimate of the total mass of the
disk as 0.16M⊕ in objects up toDc = 0.5 km in diameter.

Fig. 10 shows the timescale for dust to migrate from the in-
ner edge of the disk at 25 AU to the star due to P-R drag. The
dependence of this timescale on particle size results from ascal-
ing∝ 1/βwhich means that this has a minimum value of 60 Myr.
Since this timescale is longer than the collisional lifetime at all
sizes, P-R drag is not a significant loss process from the disc.
Fig. 10 also shows the corresponding timescale for migration
due to stellar wind drag. This also includes a scaling∝ 1/βsw,
and the efficient momentum coupling assumed here means that
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Fig. 9. The ratios of radiation pressure (solid line) and stellar
wind pressure (dashed line) to stellar gravity as a functionof
particle diameter for icy grains around GJ 581. Particles withβ >
0.5 are put on hyperbolic orbits as soon as they are created and
so removed from the system on orbital timescales, thus setting
the blow-out limit.

this timescale decreases indefinitely to smaller sizes∝ D. As a
result, stellar wind drag timescales become shorter than colli-
sional timescales at a size of around 3 nm.

Thus, if all of the assumptions hold, we would expect the
collisional cascade to extend down to 3 nm, while smaller dust
is removed by stellar wind drag. However, it should be noted that
there are significant uncertainties, both on the magnitude of stel-
lar wind drag and its efficiency of coupling to small grains, and
on the geometry of the dust disk which impacts the collisional
lifetimes. As such this plot should be considered as representa-
tive of the kind of arguments that need to be considered when as-
sessing the fate of material in the debris disk of GJ 581. Further
study of this issue is left to later papers, but here we note that the
existence (or not) of grains smaller than 1µm is not important
for the observable properties of the disk discussed in this paper,
since such grains are inefficient emitters in the far-IR.

Another scenario that we have not considered in detail is
that the dust is all in large mono-sized grains, in a configura-
tion meaning that the dust collides at low enough velocitiesthat
particles bounce off each other rather than destroy each other
(Heng & Tremaine 2010). Two constraints on such models are
that the SED should look like a black body (since all the dust is
large), and the fractional luminosity should not be large enough
that collisions must necessarily occur at high velocity. Here the
fractional luminosity only constrains the collision velocity at the
inner edge to be> 0.3m/s which is not sufficient to require a col-
lisional cascade. However, although there is no evidence from
our limited photometry of GJ 581 that the spectrum departs from
black body shape, the resolved location of the dust shows that it
is significantly hotter than black body, consistent with thepres-
ence of small grains and so incompatible with this model.

8.3. Planets and disk relationship for the GJ 581 system

First, we note that our determination of the inclination of the
disk relative to the plane of the sky is 30◦ < i < 70◦ (face on
disk is i = 0◦). This is mostly constrained by the 160µm image
and is fairly insensitive to the masks used for the background

Fig. 10. Dust removal timescales as a function of particle size,
due to collisions (solid line), Poynting-Robertson drag (dashed
line), stellar wind drag (dash-dot line), and stellar wind pressure
(dotted line).

sources. If the disk mid-plane and the orbits of the planets are
coplanar, this range of inclination makes the masses of the plan-
ets of GJ 581 no more than∼ 1.6 times their measured minimum
masses by radial velocity and, interestingly, ensures the long-
term stability of the orbits in this system as shown in dynamical
studies by Beust et al. (2008) and Mayor et al. (2009).

In our DEBRIS sample of 89 M-stars, there are only three M-
stars with known planets overall (GJ 876, GJ 832 and GJ 581).
GJ 581 hosts low mass planets and now has a detected disk,
while GJ 876 and GJ 832 host Jupiter mass planets and have no
detected disk brighter than the fractional dust luminosity10−5 in
our survey as we shall present in a future study (Matthews et al.
in prep). Hence, using these three stars as a sample, the outcome
is one disk for one low mass planet system (1/1) and no disk for
two high mass planet systems (0/2). Although this is small num-
ber statistics, we note that it is suggestive that the correlation
between low-mass planets and debris disks recently found for
G-stars by Wyatt et al. (2012) also applies to M-stars. It is also
intriguing that the only debris disk confidently detected inour
current analysis surrounds the one star in the sample that hosts
low-mass planets. We note that simulations by Raymond et al.
(2011, 2012) suggest that a correlation might exist betweenlow
mass planets and debris as a result of planet formation processes.
Note that the star AU Mic does not fall in the DEBRIS sample
of the nearest M-stars, and so is not included in the statistics
above; this young star (12 Myr) has a bright disk, but no known
planets, although radial velocity measurements toward AU Mic
are insensitive to planets with masses lower than a few Jupiters
even for short orbital periods because of its high chromospheric
activity (see GJ 803 in Fig 19 of Bonfils et al. 2011).

Current programs show that a large fraction of M-stars are
orbited by low-mass planets. The radial velocity survey of 102
M-stars conducted by Bonfils et al. (2011) yields the high oc-
curence of 35+45

−11% for low mass planets (2-10 M⊕) around
M-stars, unlike the low occurence of giant planets of∼ 2%,
for orbital periods under 100 days. Transit observations inthe
Kepler field show that small candidate planets (2− 4R⊕) with
P < 50 days are found around 25± 10 % of the M-stars
(Te f f = 3600− 4100 K), seven times more frequently than
around the hottest stars (6600-7100 K). There is no such a de-
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pendence for larger planets (4− 32R⊕) with P < 50 days, found
uniformly around 2± 1 % of the stars across all spectral types in
theKeplerfield (Howard et al. 2012). Hence, if there is a correla-
tion between the debris disks and low-mass planets of M-stars at
a level similar to that found for G stars (4/6 nearby G-stars with
detectable low-mass planets have detectable disks, Wyatt et al.
(2012), the high fraction of M-stars with low-mass planets would
explain the detection of the disk around GJ 581 but would imply
also that more disks were expected to be detected in our DEBRIS
M-star sample. We defer this discussion to a paper that describes
those observations in more detail, since not all observations are
sensitive to disks at the same level. However, GJ 581 is at theme-
dian distance of our DEBRIS M-star sample that was observed
to uniform depth, so it could simply be the brightest becauseof
some intrinsic properties. The explanation could also be related
to its multiple planetary system.

Secular perturbation theory has been applied to planetesi-
mals in debris disks perturbed by planets in Wyatt et al. (1999)
and Mustill & Wyatt (2009). The outermost planet GJ 581d
(5.4 M⊕, apl=0.22 AU, and epl=0.25, the highest eccentricity in
the system) cannot stir the disk ata = 25 AU because the time
scale for orbital crossing of planetesimals is much longer than
the stellar age (eq. 15 in Mustill & Wyatt 2009). However, a hy-
pothetical outer planet, for example a Neptune mass planet (17⊕)
at 5 AU with a moderate orbital eccentricity of 0.2, can stir the
disk ata = 25 AU in much less than the age of the system, and
trigger destructive collisions of 0.5 km-sized bodies (eq.27 in
Mustill & Wyatt 2009) to feed a collisional cascade. The most
recent detection limit onm sini from radial velocity measure-
ments of GJ 581 over 3.3 years indicates that such a planet would
not have been detected (Bonfils et al. 2011, Fig 13), and thereis
a large region of parameter space ofm sini vs a over which a
planet could both stir the disk and have eluded detection in ra-
dial velocity measurements.

Alternatively, mild collisions between planetesimals in
a weakly excited disk could eventually form a Pluto-sized
body, which in turn stirs the disk so that it produces dust
(Kenyon & Bromley 2008). This self-stirring scenario is plau-
sible since the time scale required for the formation of a Pluto-
sized body at 50AU is comparable to the age of GJ 581, even
when the surface density of solids is ten times smaller than
the minumim-mass solar nebula around an M3-type star (eq. 41
Kenyon & Bromley 2008, withxm = 0.1 ).

9. Conclusion

We have spatially resolved a debris disk around the M-star
GJ 581 withHerschelPACS images at 70, 100 and 160µm
and modeled these observations. This is the second spatially re-
solved debris disk found around an M-star after AU Mic, but,
in contrast, GJ 581 is much older and is X-ray quiet. Our best
fit model is a disk, extending radially from 25± 12 AU to more
than 60 AU. Such a cold disk is reminiscent of the Kuiper Belt
but it surrounds a low mass star (0.3 M⊙) and its fractional dust
luminosityLdust/L∗ of ∼ 10−4 is much higher. Also, in our best
fit model, the dust temperature is found to be significantly higher
than the blackbody equilibrium temperature indicating that small
grains are abundant. Finally, the inclination limits of thedisk
make the masses of the planets small enough to ensure the long-
term stability of the system according to dynamical simulations
by Beust et al. (2008) and Mayor et al. (2009).

This disk complements our view of this remarkable system
known to host at least four low mass, close-in planets. These
planets cannot perturb sufficiently the modeled cold disk to trig-

ger destructive collisions between planetesimals over theage of
the star, but a hypothetical outer planet, for example a Neptune
mass planet with an orbital radius of 5 AU and a moderate ec-
centricity, could replenish the system with dust. Alternatively,
the self-stirring mechanism could operate for this old starcaus-
ing sufficient dynamical excitation to produce the observed dust.

It is intriguing that, in our current analysis of the DEBRIS
sample of 89 M-stars, the only debris disk confidently detected
around a mature M-star also happens to be around the only star
known to have low mass planets. This could mean that the corre-
lation between low-mass planets and debris disks recently found
for G-stars by Wyatt et al. (2012) also applies to M-stars. Then,
the high fraction (∼ 25%) of M-stars known to host low mass
planets in the radial velocity andKepler observations should
make debris disks relatively common around them. If these disks
have not been detected yet, it may be because searches have sim-
ply not been deep enough, or because the disk around GJ 581 is
the brightest owing to some intrinsic properties ; for example
hosting a multiple planetary system.

Future studies and complementary observations of GJ 581 at
higher angular resolution will enhance further our knowledge of
this remarkable system around an M-star.
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