Robert Izzard's Pages of Astronomical Happiness


Home
  Science
  Papers
    2017
    2016
    2015
    2014
    2013
    2012
    2011
    2010
    2009
    2008
    2007
    2006
    2005
    2004
    2003
    PhD
  Talks
  Posters
  Projects
  Outreach
  Teaching
  Codes
  WTTS
  Synergy
  Useful
  Social
  Meetings
  Papers • Papers of 2017
The impact of companions on stellar evolution
O. De Marco, R.G. Izzard
A Dawes Review for PASA

Stellar astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries, many thanks to systematic time-domain surveys, have underlined the role of binary star interactions in a range of astrophysical events, including some that were previously interpreted as due uniquely to single stellar evolution. Here, we review classical binary phenomena such as type Ia supernovae, and discuss new phenomena such as intermediate luminosity transients, gravitational wave-producing double black holes, or the interaction between stars and their planets. Finally, we examine the reassessment of well-known phenomena in light of interpretations that include both single and binary stars, for example supernovae of type Ib and Ic or luminous blue variables. At the same time we contextualise the new discoveries within the framework and nomenclature of the corpus of knowledge on binary stellar evolution. The last decade has heralded an era of revival in stellar astrophysics as the complexity of stellar observations is increasingly interpreted with an interplay of single and binary scenarios. The next decade, with the advent of massive projects such as the Large Synoptic Survey Telescope, the Square Kilometre Array, the James Webb Space Telescope and increasingly sophisticated computational methods, will see the birth of an expanded framework of stellar evolution that will have repercussions in many other areas of astrophysics such as galactic evolution and nucleosynthesis.
Hypervelocity runaways from the Large Magellanic Cloud
D.Boubert, D.Erkal, N.W Evans, R.G. Izzard
We explore the possibility that the observed population of Galactic hypervelocity stars (HVSs) originate as runaway stars from the Large Magellanic Cloud (LMC). Pairing a binary evolution code with an N-body simulation of the interaction of the LMC with the Milky Way, we predict the spatial distribution and kinematics of an LMC runaway population. We find that runaway stars from the LMC can contribute Galactic HVSs at a rate of 3×10−6yr−1. This is composed of stars at different points of stellar evolution, ranging from the main-sequence to those at the tip of the asymptotic giant branch. We find that the known B-type HVSs have kinematics which are consistent with an LMC origin. There is an additional population of hypervelocity white dwarfs whose progenitors were massive runaway stars. Runaways which are even more massive will themselves go supernova, producing a remnant whose velocity will be modulated by a supernova kick. This latter scenario has some exotic consequences, such as pulsars and supernovae far from star-forming regions, and a small rate of microlensing from compact sources around the halo of the LMC.
Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction
Zapartas, E., de Mink, S. E., Izzard, R. G., Yoon, S.-C., Badenes, C., Gotberg, Y., de Koter, A., Neijssel, C. J., Renzo, M., Schootemeijer, A., Shrotriya, T. S.
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, 15+9-8%, of core-collapse supernovae are `late', that is, they occur 50-200 Myrs after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by 14+15-14% because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that $\phi$ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
Post-common envelope PN, fundamental or irrelevant?
De Marco, Orsola, Reichardt, T., Iaconi, R., Hillwig, T., Jacoby, G. H., Keller, D., Izzard, R. G., Nordhaus, J., Blackman, E. G.
One in 5 planetary nebulae are ejected from common envelope binary interactions but Kepler Space Telescope results are already showing this proportion to be larger. Their properties, such as abundances can be starkly different from those of the general population, so they should be considered separately when using PN as chemical or population probes. Unfortunately post-common envelope PN cannot be discerned using only their morphologies, but this will change once we couple our new common envelope simulations with PN formation models.
Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies
T. Kangas, L. Portinari, S. Mattila, M. Fraser, E. Kankare, R. G. Izzard, P. James, C. González-Fernández, J. R. Maund, A. Thompson
We study the spatial correlations between the Hα emission and different types of massive stars in two local galaxies, the Large Magellanic Cloud (LMC) and Messier 33. We compare these to correlations derived for core-collapse supernovae (CCSNe) in the literature to connect CCSNe of different types with the initial masses of their progenitors and to test the validity of progenitor mass estimates which use the pixel statistics method. We obtain samples of evolved massive stars in both galaxies from catalogues with good spatial coverage and/or completeness, and combine them with coordinates of main-sequence stars in the LMC from the SIMBAD database. We calculate the spatial correlation of stars of different classes and spectral types with Hα emission. We also investigate the effects of distance, noise and positional errors on the pixel statistics method. A higher correlation with Hα emission is found to correspond to a shorter stellar lifespan, and we conclude that the method can be used as an indicator of the ages, and therefore initial masses, of SN progenitors. We find that the spatial distributions of type II-P SNe and red supergiants of appropriate initial mass (≳9 M) are consistent with each other. We also find the distributions of type Ic SNe and WN stars with initial masses ≳20 M consistent, while supergiants with initial masses around 15 M are a better match for type IIb and II-L SNe. The type Ib distribution corresponds to the same stellar types as type II-P, which suggests an origin in interacting binaries. On the other hand, we find that luminous blue variable stars show a much stronger correlation with Hα emission than do type IIn SNe.
Links

IOA - CHU - SJC

Surrey astro

STARS

BRIDGCE

UCam

Binary_c Online

Binary_c  facebook

Tarantula

IoA Jobs