
M. Pettini: Structure and Evolution of Stars — Lecture 15

POST-MAIN SEQUENCE EVOLUTION. II: MASSIVE
STARS

15.1 Introduction

We saw in Lecture 13 that low- and intermediate-mass stars (with M ≤
8M�) develop carbon-oxygen cores that become degenerate after central
He burning. The electron degenerate pressure supports the core against
further collapse; as a consequence, the maximum core temperature reached
in these stars is lower than the T ' 6 × 108 K required for carbon fusion
(Lecture 7.4.4). During the latest stages of evolution on the AGB, these
stars undergo strong mass loss which removes the remaining envelope, leav-
ing as their remnants cooling C-O white dwarfs.

The evolution of massive stars differs in two important respects from that
of low- and intermediate-mass stars:

(1) Massive stars undergo non-degenerate carbon ignition in their cores.
The minimum CO core mass for this to happen at the end of core He burn-
ing has been estimated with detailed modelling to be MCO−core > 1.06M�.
The corresponding ZAMS stellar mass is somewhat uncertain mainly due
to uncertainties related to mixing (e.g. convective overshooting), but is
considered to be ∼ 8M�. This is why M = 8M� is conventionally taken
as the boundary between ‘intermediate’ and ‘high’ mass stars.

Stars with M >∼ 11M� achieve core temperatures high enough to ignite and
burn elements heavier than carbon up to and including Fe which is near
the peak of the binding energy per nucleon curve (Figure 7.2). With no
more nuclear energy to be extracted by burning Fe, the Fe core collapses
leading to a ‘core-collapse supernova’ (Lecture 16). Just before explod-
ing as a supernova, a massive star has an ‘onion skin’ internal structure
(Figure 15.1)

(2) Whereas low- and intermediate-mass stars experience mass loss during
the late stages of their evolution, when they are on the RGB and AGB
(Lecture 13), for stars with masses M >∼ 15M�, mass loss by fast and en-
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Figure 12.8. Schematic overview of

the onion-skin structure of a massive

star at the end of its evolution.

Apart from 28Si and 32S, oxygen burning produces several neutron-rich nuclei such as 30Si, 35S

and 37Cl. Partly these result from α-captures on n-rich isotopes already present during C-burning,

and partly from weak interactions (electron captures) such as 30P(e−, ν)30Si. As a result the overall

number of neutrons in the remnant Si-S core exceeds the number of protons (n/p > 1) and therefore

that of electrons (implying that µe > 2).

Silicon burning

When the central temperature exceeds 3 × 109 K, a process known as silicon burning starts. Rather

than a fusion reaction this is a complex combination of photo-disintegration and α-capture reactions.

Most of these reactions are in equilibrium with each other, and their abundances can be described by

nuclear equivalents of the Saha equation for ionization equilibrium. For T > 4 × 109 K a state close

to nuclear statistical equilibrium (NSE) can be reached, where the most abundant nuclei are those

with the lowest binding energy, i.e. isotopes belonging to the iron group. The abundances are further

constrained by the total number of neutrons and protons present. Due to the neutron excess of the

oxygen burning ashes (see above), the final composition is mostly 56Fe and 52Cr.

Silicon burning also occurs in a convective core of ≈ 1M$ and its duration is extremely short,

of order 10−2 yr. As in previous phases, several convective shell-burning episodes usually follow in

quick succession. The precise extent and number of these convective events determines the exact

value of the final mass of the iron core, which has important consequences for the following core

collapse and supernova phase (see Sec. 12.3.3).

Pre-supernova structure

We have obtained the following general picture. After exhaustion of a fuel (e.g. carbon) in the centre,

the core contracts and burning continues in a shell around the core. Neutrino losses speed up the

contraction and heating of the core, until the next fuel (e.g. neon) is ignited in the centre. At each sub-

sequent burning stage the outer burning shells have advanced outward, while neutrino cooling is more

efficient, resulting in a smaller burning core (in mass) than the previous stage. Eventually this leads to

an onion-skin structure of different layers consisting of heavier nuclei at increasing depth, separated

by burning shells (see Fig. 12.8). Often the central and shell burnings drive convective regions that

partially mix the various onion-skin layers. This eventually leads to complicated abundance profiles

just before the iron core collapses, an example of which is shown in Fig. 12.9 for a 15M$ star.
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Figure 15.1: Schematic overview of the ‘onion skin’ structure of a massive star at the end
of its evolution.

ergetic stellar winds is important during all evolutionary phases, including
the main sequence. For M >∼ 30M�, the mass-loss rates Ṁ are so large
that the timescale for mass loss, tml = M/Ṁ because smaller than the
nuclear timescale tnuc. Therefore mass loss has a very significant effect on
the evolution of these stars, introducing substantial uncertainties in the
calculations of massive star evolution.

Mass loss peels off the outer layers of a star, revealing at the stellar surface
the products of nuclear burning brought up into higher layers by convective
overshooting. Thus the photospheric abundances are changed drastically.
The combination of mass reduction in the outer layers on the one hand, and
larger core size—and hence increased luminosity—as a result of convective
overshooting on the other, makes all massive stars overluminous for their
masses. The main sequence lifetime is also increased because of the larger
core size.

We look in more detail at the properties of stellar winds in Section 15.3.

15.2 Massive Stars in the H-R Diagram

The evolutionary journey through the H-R diagram of a massive star un-
dergoing the different phases of core and shell burning that lead to the
internal structure shown in Figure 15.1 is complicated. Figure 15.2 shows
examples of evolutionary tracks for stars of solar metallicity, calculated
with computer-generated models that include mass loss and convective
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Figure 15.2: Evolutionary tracks of massive stars calculated with mass loss and a mod-
erate amount of convective overshooting. The shaded regions correspond to long-lived
evolutionary phases: (i) on the main sequence; (ii) during core He burning as a Red Su-
pergiant (RSG) at log Teff < 4.0; and (iii) as a Wolf-Rayet (WR) star at log Teff > 4.8.
Stars with MZAMS > 40M� are assumed to lose their entire envelope during the Luminous
Blue Variable (LBV) phase and never become RSGs. (Figure reproduced from Maeder &
Meynet 1987, A&A 182, 243).

overshooting. More recent developments of the code used by the same
authors also include the effects of stellar rotation and consider a range of
metallicities.

As the core and shell energy sources vary in relative strength, the star
makes a number of excursions to and fro across the HR diagram. In high-
mass stars, these rightward (core exhaustion) and leftward (core ignition)
excursions, between the red and blue (supergiant) branches respectively,
occur with only a slight systematic increase in luminosity. Thus, the evolu-
tionary tracks of high-mass stars are close to horizontal in the H-R diagram.
In very high-mass stars, the nuclear evolution in the central regions of the
star occurs so quickly that the outer layers have no time to respond to the
successive rounds of core exhaustion and core ignition, and there is only
a relatively steady drift to the right on the H-R diagram before the star
arrives at the pre-supernova state shown in Figure 15.1.

The path followed by evolving massive stars in the upper part of the H-R
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diagram gives rise to a rich nomenclature. On the main sequence, stars
with MZAMS

>∼ 20M� are of spectral type O. They evolve off the main
sequence as blue and red supergiants (BSG and RSG). Of stars are very
massive O supergiants whose spectra show pronounced emission lines. The
most massive stars evolve into Luminous Blue Variables (LBVs) which have
already encountered in Lecture 10.6.1.

Stars with M <∼ 40M� spend a large fraction of their core He-burning phase
as red supergiants. During this phase, a large part or even the entire
envelope can be evaporated by the stellar wind, exposing the helium core
of the star as a Wolf-Rayet (WR) star. WR stars are extreme objects
which continue to attract a great deal of attention by stellar astronomers.
We describe their main characteristics below.

15.2.1 Wolf-Rayet Stars

Spectroscopically, WR stars are spectacular in appearance: their optical
and UV spectra are dominated by strong, broad emission lines instead of
the narrow absorption lines that are typical of ‘normal’ stars (Figure 15.3).
The emission lines are so strong that they were first noticed as early as 1867
by... Charles Wolf and Georges Rayet (!) using the 40 cm Foucault tele-
scope at the Paris Observatory. Nowadays, this characteristic is exploited
to identify WR stars in external galaxies with narrow-band imaging. After
some debate, which lasted into the 1970s, WR are now recognised as the
evolved descendent of O-type stars, whose H or He-burning cores have been
exposed as a result of substantial mass loss.

From the earliest stages of the subject, it was clear that WR come in two
flavours: those with strong emission lines of He and N (WN subtypes), and
those with strong He, C and O lines (WC and WO subtypes), in which
the products of, respectively, the CNO cycle and triple-α nuclear reactions
are revealed. Each class is further subdivided in subclasses. WN2 to WN5
are early WN, or WNE, WN7 to WN9 are late WN or WNL, with WN6
being referred to as either early or late. The classification is based on the
relative strengths of emission lines of N iii to Nv and He i to He ii (see
Figure 15.3). Similarly, WC and WO subtype classification is based on the
ratios of highly ionised C and O emission lines.
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Figure 1
Montage of optical spectroscopy of Milky Way WN and WC stars together with the Smith
(1968b) ubv and Massey (1984) r narrow-band and Johnson UBV broad-band filters.
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Figure 15.3: Examples of optical spectra of Galactic Wolf-Rayet stars of the WN and WC
classes. The x-axis is wavelength is Å. (Figure reproduced from Crowther 2007, ARAA,
45, 177).

When these spectral characteristics are interpreted in terms of the surface
abundances, the following picture emerges:

WNL stars have H present on their surfaces (with X < 0.4) and increased
He and N abundances, consistent with equilibrium values from the CNO
cycle;

WNE stars are similar to WNL stars in terms of their He and N abun-
dances, but lack H (X = 0);

WC stars have no H, little or no N, and increased He, C and O abundances
(consistent with partial He-burning);

WO stars are similar to WC stars with strongly increased O abundances
(as expected for nearly complete He-burning).
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Figure 4
Stellar masses for Milky
Way WR stars, MWR,
obtained from binary
orbits (van der Hucht
2001, Rauw et al. 2005,
Villar-Sbaffi et al. 2006).

these are not believed to represent rotation velocities, because the former has a late-O
binary companion, and the absorption lines of the latter are formed within the stellar
wind (Marchenko et al. 2004). Fortunately, certain WR stars do harbor large-scale
structures, from which a rotation period may be inferred (St-Louis et al. 2007).

Alternatively, if WR stars were rapid rotators, one would expect strong deviations
from spherical symmetry owing to gravity darkening (Von Zeipel 1924; Owocki,
Cranmer & Gayley 1996). Harries, Hillier & Howarth (1998) studied linear spec-
tropolarimetric data sets for 29 Galactic WR stars, from which just four single WN
stars plus one WC+O binary revealed a strong line effect, suggesting significant
departures from spherical symmetry. They presented radiative transfer calculations
suggesting that the observed continuum polarizations for these stars can be matched
by models with equator-to-pole density ratios of 2–3. Of course, the majority of Milky
Way WR stars do not show a strong linear polarization line effect [e.g., Kurosawa,
Hillier & Schulte-Ladbeck (1999)].

2.6. Stellar Wind Bubbles
Ring nebulae are observed for a subset of WR stars. These are believed to represent
material ejected during the RSG or LBV phases that is photoionized by the WR star.
The first known examples, NGC 2359 and NGC 6888, display a shell morphology, al-
though many subsequently detected in the Milky Way and Magellanic Clouds exhibit

188 Crowther
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Figure 5
Comparisons between stellar radii at Rosseland optical depths of 20 ( = R∗, orange) and 2/3
( = R2/3, red ) for HD 66811 (O4 If ), HD 96548 (WR40, WN8), and HD 164270 (WR103,
WC9), shown to scale. The primary optical wind line-forming region,
1011 ≤ ne ≤ 1012 cm−3, is shown in dark blue, plus higher density wind material,
ne ≥ 1012 cm−3, is indicated in light blue. The figure illustrates the highly extended winds of
WR stars with respect to Of supergiants (Repolust, Puls & Herrero 2004; Herald, Hillier &
Schulte-Ladbeck 2001; Crowther, Morris & Smith 2006b).

evolutionary models, namely

log
Revol

R%
= −1.845 + 0.338 log

L
L%

(1)

for H-free WR stars (Schaerer & Maeder 1992). Theoretical corrections to such
radii are frequently applied, although these are based upon fairly arbitrary assump-
tions that relate particularly to the velocity law. Consequently, a direct comparison
between temperatures of most WR stars from evolutionary calculations and empirical
atmospheric models is not straightforward, except that one requires R2/3 > Revol, with
the difference attributed to the extension of the supersonic region. Petrovic, Pols &
Langer (2006) established that the hydrostatic cores of metal-rich WR stars above
∼15 M% exceed Revol in Equation 1 by significant factors if mass loss is neglected, ow-
ing to their proximity to the Eddington limit, !e = 1. Here, the Eddington parameter,
!e , is the ratio of radiative acceleration owing to Thomson (electron) scattering to
surface gravity and may be written as

!e = 10−4.5qe
L/L%

M/M%
, (2)

where the number of free electrons per atomic mass unit is qe . In reality, high em-
pirical WR mass-loss rates imply that inflated radii are not expected, such that the
discrepancy in hydrostatic radii between stellar structure and atmospheric models has
not yet been resolved.
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Figure 15.4: Left: Stellar masses of Galactic Wolf-Rayet stars (MWR) deduced from the
analysis of binary orbits. The y-axis is the ratio of the WR mass to that of its binary
companion, usually an O-type star. Right: Stellar radii at Rosseland optical depths of 20
(orange) and 2/3 (red) for an O4 If, a WC9, and a WN8 star, shown to scale. The primary
optical emission line region is shown in dark blue, with light blue indicating higher density
wind material. WR stars have much more extended winds than Of supergiants. (Figures
reproduced from Crowther 2007, ARAA, 45, 177).

Approximately 40% of WR stars in the Milky Way occur in binary systems,
allowing their masses to be measured (Lecture 4). As can be seen from
Figure 15.4, WCs span a relatively narrow mass range, from 9 to 16M�,
whereas WN masses are found between ∼ 10 and 83M�, and in some cases
exceed the mass of their OB companions, i.e. MWR/MO > 1.

The strong, broad emission lines characteristic of WR stars are due to their
powerful stellar winds, with terminal velocities as high as v∞ ' 2000 km s−1

and mass loss rates as high as Ṁ ' 10−5M� yr−1. WR winds are suffi-
ciently dense that an optical depth of unity in the continuum arises in the
outflowing material (rather than in a stationary stellar photosphere, as in
‘normal’ stars). The emission lines are formed far out in the wind; both
line- and continuum-emitting regions are much larger than the conven-
tional stellar radius (Figure 15.4, right panel), and their physical depths
are highly wavelength dependent.

Some young WR stars, mostly WNs, are surrounded by spectacular ring
nebulae, thought to be the result of the interaction between material
ejected in a slow wind by the WR precursor and the WR fast wind. The
hard radiation from the central WR star photoionises the swept-up circum-
stellar gas, producing a wind-blown bubble. In OB associations containing
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many massive stars, the combined effects of stellar winds and the super-
nova explosions that mark the ends of the lives of stars more massive than
8M� can produce ‘superbubbles’.

15.2.2 The Conti Evolutionary Scenario

In 1976, Peter Conti proposed an evolutionary scenario that links the var-
ious types of massive stars which, until then, had been classified primarily
on the basis of the appearance of their spectra.

Figure 12.3. Evolution tracks of massive stars (12−120M") calculated with mass loss and a moderate amount

of convective overshooting (0.25HP). The shaded regions correspond to long-lived evolution phases on the

main sequence, and during core He burning as a RSG (at logTeff < 4.0) or as a WR star (at logTeff > 4.8).

Stars with initial mass M > 40M" are assumed to lose their entire envelope due to LBV episodes and never

become RSGs. Figure from Maeder & Meynet (1987, A&A 182, 243).

M ∼
< 15M" MS (OB)→ RSG (→ BSG in blue loop? → RSG)→ SN II

mass loss is relatively unimportant, ∼< few M" is lost during entire evolution

15M" ∼< M ∼< 25M" MS (O)→ BSG→ RSG→ SN II

mass loss is strong during the RSG phase, but not strong enough to remove

the whole H-rich envelope

25M" ∼< M ∼< 40M" MS (O)→ BSG→ RSG→WNL→WNE→WC→ SN Ib

the H-rich envelope is removed during the RSG stage, turning the star into a

WR star

M ∼
> 40M" MS (O)→ BSG→ LBV→WNL→WNE→WC→ SN Ib/c

an LBV phase blows off the envelope before the RSG can be reached

The limiting masses given above are only indicative, and approximately apply to massive stars of

Population I composition (Z ∼ 0.02). Since mass-loss rates decrease with decreasing Z, the mass

limits are higher for stars of lower metallicity. The relation of the final evolution stage to the supernova

types indicated above will be discussed in Chapter 13.

The scenario for the most massive stars is illustrated in Fig. 12.4 for a 60M" star. After about

3.5Myr, while the star is still on the main sequence, mass loss exposes layers that formerly belonged

to the (large) convective core. Thus CNO-cycling products (nitrogen) are revealed, and the surface

He abundance increases at the expense of H. During the very short phase between central H and He

burning (t = 3.7Myr), several M" are rapidly lost in an LBV phase. During the first part of core

He burning (3.7 – 3.9Myr) the star appears as a WNL star, and subsequently as a WNE star (3.9 –

4.1Myr) after mass loss has removed the last H-rich layers outside the H-burning shell. After 4.1Myr

171

These evolutionary sequences are still being refined. The relation of the
final evolutionary stage to the supernova types indicated above will be
clarified in Lecture 16.

The limiting masses given above are only indicative, and apply (approx-
imately) to massive stars of solar metallicity. However, mass-loss rates
decrease with decreasing Z because, as we shall see presently (Section 15.3
and following), stellar winds are driven by the absorption of photons by
metal lines. Thus, the mass limits are higher for stars of lower metallicity.

The metallicity dependence of the winds from massive stars is thought to
be the fundamental reason behind the empirical observation that the fre-
quency of WR stars and the breakdown between different WR subclasses
are not the same in all galaxies. The best sampled galaxies are the Milky
Way (Z = Z�), the LMC (Z ' 1/2Z�) and the SMC (Z ' 1/6Z�),
although with large telescopes the samples are now being extended to
other galaxies (see the recent review by Neugent & Massey 2019). In
the solar neighbourhood, the ratio of WR stars to their O progenitors is
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Figure 12.4. Kippen-

hahn diagram of the evo-

lution of a 60M! star at

Z = 0.02 with mass loss.

Cross-hatched areas indi-

cate where nuclear burn-

ing occurs, and curly sym-

bols indicate convective

regions. See text for de-

tails. Figure from Maeder

& Meynet (1987).

material that was formerly in the He-burning convective core is exposed at the surface: N, which was

consumed in He-burning reactions, disappears while the products of He-burning, C and O, appear.

The last 0.2Myr of evolution this star spends as a WC star.

In general, mass-loss rates during all evolution phases increase with stellar mass, resulting in

timescales for mass loss that are less that the nuclear timescale for M ∼> 30M!. As a result, there

is a convergence of the final (pre-supernova) masses to ∼ 5 − 10M!. However, this effect is much

diminished for metal-poor stars because the mass-loss rates are generally lower at low metallicity.

12.3 Advanced evolution of massive stars

The evolution of the surface properties described in the previous section corresponds to the hydrogen

and helium burning phases of massive stars. Once a carbon-oxygen core has formed after He burning,

which is massive enough (> 1.06M!) to undergo carbon ignition, the subsequent evolution of the

core is a series of alternating nuclear burning and core contraction cycles in quick succession (see

Fig. 12.5). Due to strong neutrino losses (see Sect. 12.3.1) the core evolution is sped up enormously:

∼
< 103 years pass between the onset of carbon burning until the formation of an iron core. During

this time the mass of the C-O core remains fixed. Furthermore, the stellar envelope hardly has time

to respond to the rapid changes in the core, with the consequence that the evolution of the envelope

is practically disconnected from that of the core. As a result the position of a massive star in the HR

diagram remains almost unchanged during carbon burning and beyond. We can thus concentrate on

the evolution of the core of the star from this point onwards.

12.3.1 Evolution with significant neutrino losses

Neutrinos are produced as a by-product of some nuclear reactions. However, even in the absence of

nuclear reactions, weak interaction processes can result in spontaneous neutrino production at high

T and high ρ. Owing to the fundamental coupling of the electromagnetic and weak interactions, for

each electronic process that emits a photon, there is a small but finite probability (of the order of

172

Figure 15.5: Diagram of the evolution of a 60M� star of solar metallicity. Cross-hatched
areas indicate where nuclear burning occurs, and curly symbols indicate convective re-
gions. (Figure reproduced from Maeder & Meynet 1987, A&A 182, 243).

N(WR)/N(O)∼ 0.15, but in the SMC N(WR)/N(O)' 12/1000 = 0.01.
Furthermore, in the solar neighbourhood N(WN)'N(WC), but in the
LMC N(WN)/N(WC)' 5 and in the SMC N(WN)/N(WC)∼ 10.

Figure 15.5 illustrates the evolutionary scenario for a M = 60M� star,
indicative of the most massive stars. After ∼ 3.5 Myr, while the star is
still on the main sequence, mass loss exposes layers that formerly belonged
to the (large) convective core. Thus CNO-cycling products, especially N,
are revealed, and the surface He abundance increases at the expense of H.
During the very short phase between core H and He burning (t = 3.7 Myr),
several M� are rapidly lost in an LBV phase. During the first part of
core He burning (t = 3.7–3.9 Myr), the star appears as a WNL star, and
subsequently (t = 3.9–4.1 Myr) as a WNE star, after mass loss has removed
the last H-rich layers outside the H-burning shell. After 4.1 Myr, material
that was formerly in the He-burning convective core is exposed at the
surface: N, which was consumed in He-burning reactions, disappears while
the products of He-burning, C and O, appear. In the last 0.2 Myr of its
evolution the star is a WC star.

In general, mass loss rates during all evolutionary phases increase with
stellar mass; as a result, there is a convergence of the final (pre-supernova)
masses to a range between 5 and 10M�. However, this effect is diminished
in metal-poor stars which experience lower mass loss rates.
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Table 15.1 summarises some of the properties of the different nuclear burn-
ing stages in a 15M� star. Note the accelerating timescales as heavier and
heavier elements are ignited and the star approaches its final fate as a
supernova.

15.3 Stellar Winds

Most stars lose mass. The existence of the solar wind, a stream of high
velocity particles moving radially outwards from the Sun and carrying mag-
netic fields with them, was inferred in the early 1950s from the observation
that comet ion tails always point away from the Sun, rather than trailing
behind the comet. The total mass flow can be estimated from the particle
density and their typical velocity (at the location of the Earth):

Ṁ = nmH v 4πd2 ∼ 10−14M� yr−1 (15.1)

where d = 1 AU, n ∼ 5 cm−3, and v ∼ 500 km s−1. With such a low
mass loss rate, the Sun will have lost only ∼ 0.1% of its mass during
its entire lifetime of ∼ 1011 years (if the present mass-loss rate remained
constant during the whole lifetime of the Sun, which it won’t, as we saw
in Lecture 13).

The mechanism by which solar mass stars lose mass is quite different from
that which drives the much higher mass loss rates (Ṁ = 10−7–10−4M� yr−1,
corresponding to ∼ 1/30 to 30 Earth masses per year) seen in hot stars
with M >∼ 15M� and which we are going to discuss here.
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Figure 15.6: Ultraviolet spectra of massive OB stars in the Magellanic Clouds, obtained
with the Faint Object Spectrograph on the Hubble Space Telescope. The resonance lines of
Nvλλ1238, 1242 and C ivλλ1548, 1550 display strong P Cygni profiles indicative of high
wind terminal velocities and large mass loss rates. (Figure reproduced from Walborn et
al. 1995, PASP, 107, 104).

15.3.1 P Cygni Line Profiles

We see direct evidence of such mass loss in the profiles of spectral lines of
highly ionised species such as C iv, Si iv, Nv and Ovi in the ultraviolet
spectra (from 1549 to 1035 Å) of primarily O and B-type stars (but also
WR stars and A supergiants); some examples are shown in Figure 15.6.

These line profiles, which are a mixture of emission and absorption, are
called P Cygni profiles from the LBV star in which they were first seen.
Figure 15.7 illustrates the basic formation mechanism in an outflowing
extended stellar atmosphere.

The material in front of the stellar disk absorbs light at the frequencies
of these resonance lines. The resulting absorption profile extends from
v = 0 km s−1 (assuming the radial velocity of the star relative to the Earth
to be zero) to a maximum negative velocity, v∞. Thus, the absorption line
has a net blue-shift relative to the star. Although absorption of starlight

10



Figure 15.7: Schematic representation of the origin of P Cygni line profiles in an expanding
stellar atmosphere.

takes place everywhere within the extended atmosphere, we can only see
it if the absorbing ions are located in front of the stellar disk—hence the
net blueshift of the absorption component of the P Cygni profile.

Once the outflow reaches its maximum velocity, this velocity will remain
approximately constant up to large distances from the star (in the absence
of other forces); hence the term ‘terminal velocity’. Typical values range
from v∞ ' −200 km s−1 in A-type supergiants to v∞ ' −3000 km s−1 in
early O-type stars. The sound speeds in the atmospheres of these stars are
typically 10–30 km s−1; thus the winds are highly supersonic.

If the material in front of the star is optically thick over the full velocity
range, it will produce strongly saturated, almost rectangular, absorption
line profiles, as in the example shown in Figure 15.7. This is not necessarily
always the case, and weaker, unsaturated absorption components to the
P Cygni composite profile are possible.

Following absorption in any of the above resonant (from the ground state
to the first excited level of the ion under consideration) lines, a new photon
will be re-emitted as the electron returns to the ground state. Overall, an
observer would see an emission profile resulting from a multitude of such
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re-emission processes at different velocities. Note that the wind emission
provides additional radiation over that due to the stellar photosphere’s
blackbody emission; that is, we see an emission line superimposed on the
stellar continuum.

Unlike the absorption case, an observer sees photons emitted from gas be-
hind, as well as in front of, the star—gas that is moving with, respectively,
positive and negative velocities relative to the star. Such an emission pro-
file has a maximum at v = 0 and falls off to zero at v∞. This is simply a
geometrical effect, with the largest emitting areas having net zero velocity
(projected along the line of sight to the observer). The larger the projected
wind velocity, the smaller the corresponding emitting area. Since there are
no absorbing and re-emitting ions at velocities larger than v∞, the emission
profile is restricted to this velocity range.

Note that if the radius of the stellar photosphere (where the continuum
in produced) is not small compared to the physical extent of the wind,
the emission profile can be intrinsically asymmetric, with the approaching,
blue-shifted, portion in front of the star emitting more flux (as viewed from
a given direction) than the receding back portion which is occulted by the
star.

The overall P Cygni profile, as observed for example in the C ivλλ1548, 1550
lines in the ultraviolet spectrum of the O5 Iaf star ζ Puppis (Figure 15.7),
is the superposition of three components: stellar blackbody continuum,
blueshifted absorption, and (possibly asymmetric) emission.

15.3.2 Diagnostics of P Cygni Profiles

There are three main physical quantities that can be determined from the
analysis of the P Cygni profiles of UV absorption lines in the spectra of
hot, massive stars:

(i) The terminal velocity, v∞. Provided there is a sufficiently high col-
umn density of absorbing ions over the full velocity range of the wind, v∞
can be readily deduced by measuring the extreme blue wavelength of the
absorption profile and applying the familiar Doppler formula:

v∞ =
λmin − λ0

λ0
c

12



where λ0 is the laboratory wavelength of the transition under consideration
and c is the speed of light.

(ii) The ion column density, N . Provided the absorption profile is not satu-
rated (recall the discussion of this point in Lecture 6.4), it may be possible
to deduce the distribution of ion column densities at different velocities
in the wind. This is normally done by comparing a family of computer-
generated theoretical line profiles with the observed one, and minimising
the difference between the two. Under favourable circumstances, the ion
column densities thus deduced can be interpreted to infer the mass loss
rate and relative element abundances.

(iii) The shape of the velocity field, v(r). Particularly when the absorption
profile is saturated, the exact shape of the absorption+emission composite
is sensitive to the velocity field—changing the way v varies with distance
r from the stellar ‘surface’ (for example, a steep or a shallow velocity
gradient) can produce recognisable changes in the overall P Cygni profile.
We shall show some examples in the next section.

15.4 Theory of Radiatively Driven Winds

In this section we shall take a closer look at radiative line acceleration in
hot star winds. In particular, we’ll see how this acceleration mechanism
leads to certain scaling relations for some of the wind properties, such as Ṁ
and v∞. We consider the simplest possible model: a homogeneous, time-
independent,1 spherically symmetric, stellar wind free of magnetic fields.
We further assume that the photons emitted from the stellar photosphere
and which are driving the wind are propagating only radially. None of
these simplifying assumption actually applies to real hot star winds, of
course. However, it turns out that the majority of observations can be
reproduced satisfactorily with such a simple model, except for the assump-
tion of homogeneity (that is, introducing clumping in the wind turns out
to be important).

1Confusingly, in the literature the assumption that the wind properties are time-independent is referred
to as a ‘stationary’ wind.
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Figure 2: Principle of radiative line-driving (see text).

Figure 15.8: Schematic representation of the principle of radiative line-driven winds. Each
absorbed photon transmits a momentum hν/c to the absorbing ion in the direction of
propagation of the photon. The emitted photons transmit a momentum in the direction
opposite to the propagation direction. The momenta transmitted by the isotropically
re-emitted photons cancel on average. The momenta of the absorbed photons add.

15.4.1 Momentum Transfer via Line Absorption and Re-emission

The basic principle is illustrated in Figure 15.8. The absorption and re-
emission of stellar photons in a spectral line with frequency νi in the atomic
rest frame, result in a net transfer of momentum in the radial direction

∆Pradial =
h

c
(νin cos θin − νout cos θout) (15.2)

to the absorbing and re-emitting ion. Here θ is the angle between the
direction of the photon and the radial unit vector (parallel to the velocity
vector) of the ion. Since the absorbed photons are re-emitted isotropically,
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ρ

r

r + dr

v + dv

v

Lν

Figure 15.9: Sketch of a blue supergiant star irradiating a thin shell of wind material. Lν

is the star luminosity at frequency ν, v is the wind velocity at radius r, and ρ is the local
density within the shell. The shell has mass m = 4πr2ρ dr.

we have:
〈cos θout〉 = 0 . (15.3)

On the other hand, prior to absorption the stellar photons are approaching
from the direction of the star, that is their direction of propagation is
parallel to the ion velocity vector; thus:

〈cos θin〉 ≈ 1 . (15.4)

Therefore,

〈∆Pradial〉 =
hνin

c
(15.5)

Let us now consider a thin shell in the wind, as in Figure 15.9. Within
the shell, the wind velocity increases by an amount dv on a scale dr.
Photons emitted from the stellar surface (photosphere) with observer’s
frame frequency νobs can be absorbed by an ion if their frequency in the
ion frame equals the transition frequency νi. Assuming that the photons
propagate radially, the two frequencies are related via the Doppler formula:

νi = νobs −
νi

c
v

νi = (νobs + dνobs)−
νi

c
(v + dv) .

(15.6)

In other words, a possible absorption and re-emission process (which from
now on we shall call a ‘scattering’ event) by an ion moving outwards with
the wind requires stellar photons which have left the stellar surface with
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higher frequencies than that of the atomic transition under consideration.
The frequency interval dνobs corresponding to the velocity interval dv is
just:

dνobs = νi
dv

c
.

The radiative acceleration of the shell resulting from a given absorption
line can be calculated using the general definition of any acceleration:

gi
rad =

∆P

∆t∆m
. (15.7)

In our case, the line acceleration is obtained by multiplying the average
momentum transferred in a scattering event by the number of available
photons in the corresponding frequency interval, per unit time and per
unit mass of the accelerated shell. The number of photons per unit time
is simply:

Nν

∆t
=

∆ (Eν/hν)

∆t
=
Lν ∆νobs

hνobs
(15.8)

where Lν is the stellar luminosity (equal to the radiated energy per unit
time per unit frequency) at frequency ν. With νin = νobs, the radial accel-
eration of the shell caused by a single atomic transition is therefore:

gi
rad =

Nν 〈∆Pradial〉
∆t∆m

=
Lν ∆νobs

hνobs

hνobs

c

1

∆m
=
Lννi

c2

dv

dr

1

4πr2ρ
. (15.9)

It is noteworthy that the radiative line acceleration of the shell depends on
the velocity gradient dv/dr within the shell (can you see why?).

15.4.2 Total Line Acceleration

To obtain the total radiative acceleration we need to take into account two
other factors.

First, until now we have assumed a unit probability of interaction between
photons (of the appropriate frequency) and ions. We include in eq. (15.9)
a factor which reflects the dependence of this probability on the atomic
properties:

Pinter = 1− e−τ
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where τ is the optical depth of the observed transition at coordinates r, v,
dv.

Recalling again our treatment of absorption lines in Lecture 6, we can
reduce Pinter to two limiting cases. If τ � 1, the atomic transition in
question is optically thick, and Pinter ≈ 1. On the other hand, if τ <∼ 1,
the line is optically thin and the acceleration due to such lines needs to be
modified by a factor corresponding to the local optical depth. If τ � 1,
Pinter ≈ τ . The radiative acceleration due to an optically thin line is a
factor of τ smaller than that due to an optically thick line.

Second, in the expanding atmosphere of a hot star, there is not just a single
atomic transition capable of driving a wind. On the contrary, there are
literally millions of transitions from atoms and ions of the most abundant
elements of the Periodic Table which are potentially capable of absorbing
radiation and momentum. In practice, ‘only’ some ten thousand lines are
relevant for calculating the overall line acceleration, gtot

rad, because the rest
have too low an interaction probability or lie in a spectral range where the
photon density is small.

In order to calculate the total line acceleration, we have to sum up all
individual contributions:

gtot
rad = Σthin g

i
rad + Σthick g

i
rad

=
1

4πr2c2

(
Σthin Lννi

dv

dr

τi

ρ
+ Σthick Lννi

dv

dr

1

ρ

)
(15.10)

(with the above scheme of dividing the lines into just two categories of
optical depth).

In the so-called ‘Sobolev’ approximation:

τi =
kiρ

dv/dr
(15.11)

the optical depth of a line can be expressed as a function of the velocity
gradient, density and a ‘line-strength’ parameter ki which includes all of
the atomic and plasma physical details of the transition (most importantly,
occupation number of the absorbing level and the interaction cross-section),
and remains roughly constant throughout the wind.

The mammoth task of including thousands of atomic transitions in the
summations in eq. 15.10 is made very much easier by the fact that the
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distribution of line strengths can be satisfactorily approximated by an an-
alytical power-law:

dN(ν, ki) = −N0 fν(ν) kα−2
i dν dki . (15.12)

Here, dN(ν, ki) is the number of lines in the frequency interval ν, ν+dν with
line strengths ki, ki + dki, and the exponent α takes the values 0 < α < 1.
Note that the frequency distribution of lines is independent of the line
strength distribution. The validity of eq. 15.12 is confirmed by detailed
model atmosphere calculations, which also indicate that typically α ≈ 2/3.

Equations 15.12 and 15.10 then lead to a rather simple expression for the
total line acceleration in the wind:

gtot
rad = C L

4πr2

(
dv/dr

ρ

)α
(15.13)

where L =
∫
Lνdν is the stellar luminosity. Note that in this formulation

the line acceleration depends only on hydrodynamical quantities apart from
the scaling factor C and the exponent α.2

15.4.3 Solving the Equation of Motion

With the simple analytical form for the total line acceleration given by
eq. 15.13, we can begin to examine the hydrodynamical structure of the
stellar wind. The following equations apply to stationary, spherically sym-
metric flows:

1. The equation of Continuity:

dM

dt
= 4πr2ρv (15.14)

2. The equation of Momentum:

v
dv

dr
= −1

ρ

dp

dr
− ggrav(1− Γ) + gtot

rad (15.15)

2The real challenge of computer modelling of hot star winds is the calculation of these two parameters,
whose values depend on the occupation numbers of all the contributing atomic energy levels.
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3. The equation of State:

p = −ρa2 (15.16)

where M is the stellar mass, p is the pressure, a is the isothermal sound
speed, and ggrav is the gravitational acceleration of the star. Note that
this last quantity is modified by a factor Γ < 1 to take into account the
acceleration due to Thomson scattering of photons off free electrons. The
parameter Γ is the same Eddington factor already encountered in eq. 10.40:

Γ =
κes L

4πcGM
(15.17)

with the main source of opacity κ provided by electron scattering. Radia-
tion pressure via Thomson scattering reduces gravity by a constant factor.
For this reason, the term M(1− Γ) ≡Meff is sometimes referred to as the
‘effective mass’. Clearly, Γ < 1 for a star to be stable against radiation
pressure (as already discussed in Lecture 10.6); in early-type supergiants,
Γ ' 0.5 typically.

Let us now solve these equations for the major, supersonic portion (v > a)
of the wind. In this regime, pressure forces can be neglected. Inserting
(15.14) into (15.15) and making use of (15.13), the equation of motion of
the wind now becomes:

r2v
dv

dr
= −GM(1− Γ) + C ′L

(
dM

dt

)−α (
r2v

dv

dr

)α
. (15.18)

Equation 15.18 can be readily solved with the substitution z = r2vdv/dr.
The parameter z needs to be constant throughout the wind to allow for a
unique solution, since all the other quantities are constant as well. This
constrains the mass loss rate dM/dt ≡ Ṁ to:

Ṁ ∝ L1/α [M(1− Γ)]1−1/α . (15.19)

Furthermore, from the condition z = constant, the velocity law is obtained
via a simple integration, independently of the mass loss rate:

v(r) = v∞

(
1− R∗

r

)1/2

(15.20)
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and

v∞ =

(
α

1− α

)1/2 (
2GM(1− Γ)

R∗

)1/2

(15.21)

where R∗ is the stellar radius. The second term on the r.h.s. of eq. 15.21
is the photospheric escape velocity. We mentioned earlier that detailed
model atmosphere calculations indicate that values of α ≈ 2/3 are typical;
thus, v∞ '

√
2 vesc.

The above analytical treatment of the hydrodynamics of stellar winds has
of necessity made a number of simplifying assumptions. More detailed
analyses, however, do not change the picture dramatically. Most impor-
tantly, the scaling relation for Ṁ remains unaltered and the proportionality
between v∞ and vesc is maintained, although the constant of proportional-
ity changes somewhat. The most severe change concerns the shape of the
velocity field:

v(r) = v∞

(
1− R∗

r

)β
(15.22)

with the exponent β ≈ 0.8 in most cases, rather than the value of 1/2
deduced above. That is, the wind velocity increases more slowly with
distance from the star.

It was stated earlier (Section 15.3.2) that from the shape of the P Cygni
profiles it is possible to infer the shape of the velocity field within the wind.
We can now illustrate the dependence of the line profiles on the value of
the exponent β in eq. 15.22 with the computed P Cygni lines shown in
Figure 15.10.

The higher the value of β, the further from the star is v∞ reached. Fig-
ure 15.10 shows that the shallower the velocity field, the stronger is the
P Cygni emission. The variation in the line profiles within each panel
(i.e. for the same value of β) illustrates the dependence of the emis-
sion/absorption on the ion density, which was assumed to be proportional
to the total wind density. Each profile differs by a factor of ten in density.
Note that the last two cases are essentially indistinguishable, because the
lines have become saturated.

20



15.4.4 The Wind-Momentum Luminosity Relation

The scaling relations we have derived provide a theoretical explanation for
the empirical relationship between wind momentum and stellar luminos-
ity first formulated by Rolf Kudtrizki and collaborators on the basis of
observations of massive stars.

In Galactic supergiants, the wind-momentum luminosity relation takes the
form:

Ṁv∞

(
R∗
R�

)1/2

∝ L1.46 . (15.23)

What this empirical relation tells us is that, for a given stellar radius,
the wind-momentum rate depends on some power of the stellar luminosity
alone. On the other hand, from our theoretical scaling relations we would
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Figure 14: Response of theoretical P Cygni profiles to a variation of ion density (line strength)
and velocity field. See text.

In all figures it was assumed that the ion density varies proportional to the total wind density.
For different assumptions on this relation, completely different line shapes can arise, as you will
see during your lab work.

NOTE: From a certain threshold on, the profiles are no longer changing when the ion density is
further increased. This is the reason to call such profiles saturated !

Doublets: superposition of two profiles

A closer look at the observed P Cygni profiles (e.g., Sect. 3) reveals that all but the Niv λ1720
line consist of two components. This is because most of the UV resonance lines from a certain ion
have two different ground states7 with very similar energies (both of which can be radiatively
excited). This means, that these profiles consist of two superimposed P Cygni components,
called doublets. This fact has to be accounted for in the simulation and analysis, of course.

Regarding the determination of v∞, this quantity still can be read off the blue edge of the
composite profile. One just has to translate the frequency shift with respect to the transition

7due to fine-structure splitting

Figure 15.10: Examples of theoretical P Cygni line profiles. The four panels correspond to
different values of the exponent β in eq. 15.22, which governs the steepness of the velocity
law. In each panel, four profiles are shown for different optical depths of the absorbing
ions, as follows. Continuous line: low ion column density; dashed line: intermediate ion
column density; dotted and dash-dotted lines: high column densities (these last two lines
are superimposed and therefore cannot be readily distinguished in the plots).
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predict, combining eqs. 15.19 and 15.21:

Ṁv∞

(
R∗
R�

)1/2

∝ L1/α [M(1− Γ)]3/2−1/α (15.24)

which at first glance seems quite different in that it includes an additional
mass dependence. But, recalling that α ≈ 2/3, the terms in square brackets
in eq. 15.24 becomes unimportant, leaving only the term L1/α = L∼1.5 on
the r.h.s. of the equation, in excellent agreement with the empirical relation
at (15.23).

Summarizing, the observed wind-momentum luminosity relation can be
explained as a consequence of the scaling relations for line-driven winds,
plus the exponent of the line-strength distribution function being close
α = 2/3.

15.5 Metallicity Dependence of Mass Loss

From the discussion in Section 15.4, it should be fairly obvious that the
properties of radiatively driven winds are likely to exhibit a metallicity
dependence.

Due to its definition, the ‘line-strength’ parameter ki in the Sobolev ap-
proximation (eq. 15.11) scales with metallicity (under the assumption that
the ionisation balance is not severely modified) as:

ki,Z = ki,Z�
Z

Z�
(15.25)

Thus, the major effect of changing the metallicity is a horizontal shift of
the corresponding line-strength distribution function (in the log–log rep-
resentation) to the ‘left’ (for Z/Z� < 1) or to the ‘right’ (for Z/Z� > 1),
as sketched in Figure 15.11. Such a shift translates to a change in the
total number of lines contributing to the wind acceleration, and to the cor-
responding normalisation constant N0 in eq. 15.12. For a power-law, the
normalisation varies as:

N0,Z = N0,Z�

(
Z

Z�

)1−α
(15.26)

22



!"#$%%&'&#(

!!"# " !
!
!"#

$
$!

! " !!
$
$!

!!"# " !
!
!"#

$

$!

#%&& " "
!

%&&!
$
$!
"!!! !"#$ ! ! $

$!
"!!!#!!

!$ " !$!!
$
$!
"
!!!

!

)**+#,-./01

2345&#67&-"#-$%8,-./0/

93%:,-2345&#67&-"#-$%8,-.//;

7!$<

%+=-7

%+=->?7@

ABA:3>

ACA:3>

%+=-!?#@

ABA:3>

ACA:3>

%+=-#
#:

!
max

Figure 15.11: Sketch of the effect of decreasing metallicity on the line-strength distribution
function.

The overall effect is a metallicity dependence of the mass loss rate of the
form:

ṀZ = ṀZ�

(
Z

Z�

) 1−α
α

(15.27)

or
ṀZ

ṀZ�

=

(
Z

Z�

)0.5

(15.28)

if α = 2/3. Metallicity has a smaller effect on the wind terminal velocity:

v∞ ∝
(
Z

Z�

)0.15

(15.29)

More extensive parameterizations of the mass loss rate as a function of L,
M , Teff , v∞ and Z have been computed from ever-more sophisticated nu-
merical modelling (e.g. Vink et al. 2001, A&A, 369, 574). When combined
with a theoretical M -L relation for massive stars, we find the typical values
listed in Table 15.2. Massive stars with M > 50M� lose more than 10% of
their mass while on the Main Sequence.

For Galactic stars, the empirical relationship proposed by Jager et al.
(1988):

log Ṁ = −8.158 + 1.769 log(L/L�)− 1.676 log(Teff/K) (15.30)

is often adopted. Note the inverse temperature dependence. The reason is
to be found in the lower opacities at higher temperatures; thus, at a given
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bolometric luminosity, an A-type supergiant will have a higher mass loss
rate than an O-type star.

Table 15.2 Parameters of Massive Stars

MZAMS (M�) log(L/L�) log(Ṁ/M� yr−1) tMS (106 yr) ∆M/Ma

25 4.85 −6.97 6.6 0.028
40 5.34 −6.23 4.5 0.067
60 5.70 −5.68 3.7 0.13
85 5.98 −5.26 3.3 0.21
120 6.23 −4.88 2.8 0.31

a Fractional mass lost while on the Main Sequence

Both eq. 15.30, scaled for metallicity according to eq.15.28, and the multi-
parameter theoretical formulation of the mass loss rate by Vink et al.
(2001) do a reasonably good job of matching the data (Figure 15.12),
although there remains significant scatter (∼ 0.3 dex), some of it undoubt-
edly due to uncertainties in the measurements of Ṁ .
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Figure 5 A comparison is shown between the observed mass-loss rates determined by Puls

et al. (1996) and that predicted by the empirical fit of de Jager et al. (1988) (open symbols)

and the theoretical formalism of Vink et al. (2001) ( filled symbols). Circles denote Galactic

stars, squares denote LMC stars, and triangles denote SMC stars.

the situation is more complicated than a simple power-law scaling, with a thresh-

old effect at low Z. However, over the metallicity range usually considered (i.e.,

SMC to solar neighborhood), a scaling with (Z/Z!)
0.5 turns out to be a good

approximation, at least for O-type stars (see his table 2). However, Vink et al.

(2001) concludes that the mass-loss rates scale as (Z/Z!)
0.7 when one includes

the dependence of the terminal velocity with metallicity.

Further observational checks would be useful on mass-loss rates, particularly at

higher metallicities. So far, mass-loss rates have been derived in a consistent man-

ner only for Milky Way, LMC, and SMC stars, which cover a range of metallicity

of a factor of 3.7 (Table 1). This could be pushed to a factor of ∼15 by studies
of massive stars throughout the Local Group, and probe regions that are higher in

metallicity than the solar neighborhood, e.g., in the Andromeda Galaxy. Fledgling

efforts in this direction have been taken by Bianchi et al. (1994, 1996), Smartt

et al. (2001), Urbaneja et al. (2002), and even beyond the Local Group by Bresolin

et al. (2002a). (See also Prinja & Crowther 1998, who reanalyze much of these

data, but stop short of deriving mass-loss rates.) The UV observations needed to

measure the terminal velocities are well within the reach of HST, and the optical

data (needed to determine the other stellar parameters) are obtainable with 8-m

class ground-based spectroscopy.
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Figure 15.12: Comparison between observed (x-axis) and predicted (y-axis) mass loss
rates. Open symbols denote values of Ṁ calculated from eq. 15.30 with the metallicity
scaling of eq. 15.28, while filled symbols are those given by the theoretical formalism of
Vink et al. (2001). Circles are Galactic stars, squares LMC stars, and triangles SMC
stars. (Figure reproduced from Massey et al. 2003, ARAA, 41, 15).
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We still have much to learn regarding how mass loss rates in massive stars
vary with metallicity and perhaps other parameters of the host galaxy. Our
knowledge of this field is improving with observations, made possible by
8-10 m telescopes, of individual massive stars in galaxies beyond the Local
Group, as well as in low-mass, low-metallicity dwarf galaxies in the Local
Group. It is important to remember that the metallicity dependence of
mass loss rates, as given for example by eq. 15.28, is empirically untested
for metallicities Z <∼ 1/6Z� (the metallicity of SMC O-type stars). This is
crucial when we come to consider the evolution of the ‘First Stars’ (also
referred to as Population III stars), which formed out of primordial gas—
consisting only of H and He—and were likely very massive.
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