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Abstract: We revisit the problem of why stars become red giants. We modify the physics of a
standard stellar evolution code in order to determine what does and what does not contribute to a
star becoming a red giant. In particular, we have run tests to try to separate the effects of changes in
the mean molecular weight and in the energy generation. The implications for why stars become red
giants are discussed. We find that while a change in the mean molecular weight is necessary (but not
sufficient) for a 1 Mg star to become a red giant, this is not the case in a star of 5 Mg. It therefore
seems that there may be more than one way to make a giant.
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1 Introduction

The question ‘why do stars become red giants?’ is per-
haps one of the longest standing problems in stellar
astrophysics. In a recent paper Sugimoto & Fujimoto
(2000) provided a long list of work on the subject, with
publication dates spanning over four decades. The
problem has been approached from many different an-
gles, from considerations of polytropic solutions (e.g.
Eggleton & Cannon 1991) to detailed numerical mod-
elling (e.g Iben 1993). Despite all the investigation into
the subject, the question has yet to receive an answer
that is satisfyingly simple and sufficiently rigourous’.
There is still no consensus on why stars become red
giants. Theories to explain the phenomenon are many
and varied. Some assert that a ‘softening’ of the effec-

that only a strong gravitational field could produce
properties similar to red giants. Subsequently, Weiss
(1983) extended their work to cover stars in the mass
range 1 < M/My < 8. Using polytropic models,
Frost & Lattanzio (1992) later demonstrated that this
could not be the sole cause.

Renzini et al. (1992) suggested that stars become
red giants because of a thermal instability in their en-
velopes. In their view, expansion is initially driven by
the envelope maintaining thermal equilibrium in re-
sponse to increasing luminosity from the core. This
expansion leads to local cooling and the recombina-
tion of heavy elements. An increase in the opacity
results, trapping energy in the envelope. This leads
to a runaway expansion that brings the star to the
red giant branch. However. Iben (1993) subseauently
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Comparison in size of Sun as a main sequence star
and a red giant

Sun as a main sequence
star
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Hydrogen Shell Burning on the Red Giant Branch
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Two Globular Clusters
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Close-up of core region fora 1 M
Asymptotic Giant Branch star

Hydrogen-burning
/ shell

radius ~ 1-1.5 Al

Helium layer

Helium-burning
shell

Carbon-oxygen core

(no fusion) (not to scale)
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Helix Nebula « NGC 7293
Hubble Space Telescope *» Advanced Camera for Surveys
NOAO 0.9m ¢ Mosaic | Camera

NASA, NOAO, ESA,The Hubble HelixTeam, M. Meixner (STScl), and T.A. Rector (NRAQO) ® STScl-PRC03-11a




Cat’s Eye Nebula « NGC 6543

Hiubble,

NASA, ESA, HEIC and The Hubble Heritage Team (STScl/AURA)
Hubble Space Telescope ACS *» STScl-PRC04-27
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Hot blackbody Prism
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