
M. Pettini: Structure and Evolution of Stars — Lecture 7

WHAT MAKES A STAR SHINE?

In this lecture, we are going to look in more detail at some of the ideas
outlined in Lecture 1, section 1.3. What are the sources of energy available
to a star?

7.1 Gravitational Potential Energy

A potential source of energy to a newly born star is the gravitational energy
released when the interstellar clouds from which the star formed began
contracting. The virial theorem for a system in equilibrium:

−2〈K〉 = 〈U〉 (7.1)

where K and U are the kinetic and potential energy respectively and the
brackets denote time averages, tells us that:

〈E〉 = 〈K〉+ 〈U〉 =
1

2
〈U〉 (7.2)

only half the change in gravitational potential energy is available to be
radiated away as the protostar contracts; the remaining potential energy
supplies the thermal energy that heats the gas.

Referring to Figure 7.1, the gravitational force acting on a test particle of
mass dmi at a distance r from the centre of a spherically symmetric mass
distribution is

dFg,i = G
Mr dmi

r2
(7.3)

where Mr is the mass contained within r, which acts as a point mass M
located at the centre of the sphere, and the force is directed towards the
centre of the sphere. The corresponding gravitational potential energy of
the test mass is:

dUg,i = −GMr dmi

r
(7.4)

Summing all the mass within a thin shell of thickness dr, with total mass
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Figure 7.1: Gravitational potential energy of a star.

dm = 4πr2 drρ where ρ is the density (mass per unit volume, e.g. g cm−3)
and 4πr2 dr is the volume of the shell, we can rewrite eq. 7.4 as:

dUg = −GMr 4πr2ρ

r
dr (7.5)

To obtain the total gravitational potential energy of a star, we integrate
7.5 over all mass shells from the centre of the star to its surface:

Ug = −4πG
∫ R

0
Mrρ r dr (7.6)

To properly evaluate the integral, we need to knowMr = f(r) and ρ = f(r).
As an approximation, let us assume that an average density 〈ρ〉 obtains
everywhere within the star; then:

Mr ∼
4

3
πr3〈ρ〉 , (7.7)

and the mass of a star of radius R is M = 4/3 πR3 〈ρ〉. Substituting 7.7
into 7.6 and integrating:

Ug ∼ −
16π2

15
G 〈ρ〉2R5 = −3

5

GM 2

R
. (7.8)

As we saw, applying the virial theorem, tells us that half of this energy
could have been radiated away as a protostar contracted from Rinitial to
Rfinal, where Rinitial � Rfinal.

For the Sun:

∆Eg =
3

10

GM 2
�

R�
=

3

10
G

(2× 1033)2

7× 1010

cm3 g−1 s−2g2

cm
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∆Eg =
3

10
6.7× 10−8 4× 1066

7× 1010
g cm2 s−2

∆Eg = 1.2× 1048 erg

If the Sun radiated this energy on average at its present luminosity, the
corresponding timescale, known as the Kelvin-Helmholtz timescale, would
be:

τKH =
∆Eg

L�
=

1.2× 1048

3.8× 1033

erg

erg s−1

τKH ∼ 3× 1014 s ' 1× 107 yr

The Kelvin-Helmholtz timescale is two orders of magnitude smaller than
the age of the solar system, as measured by radioactive dating techniques
applied to Moon rocks, for instance. Thus, the Sun must now be shining by
a different mechanism than converting gravitational potential energy into
radiation. Nevertheless, during its initial contraction from a protostellar
cloud, the release of gravitational energy must have played an important
role.

7.1.1 Average Temperature of the Sun

We can also use the virial theorem to roughly estimate the average tem-
perature of a star. From eqs. 7.1 and 7.8, we have:

〈K〉 =
3

10

GM 2

R
. (7.9)

We now want to know the average temperature 〈T 〉 which corresponds
to the average kinetic energy 〈K〉. We obtain this by recalling that the
distribution of particle velocities as a function of T is given by the Maxwell-
Boltzmann distribution:

f(v) =

(
2

π

)1/2 ( m
kT

)3/2

v2 exp

−mv2

2kT

 . (7.10)

We obtain the most probable speed, vp, by imposing the condition df(v)/dv = 0,
which gives:

vp =

(
2kT

m

)1/2

,

3



and the rms speed:

vrms =
(∫ ∞

0
v2 f(v)dv

)1/2
=

(
3kT

m

)1/2

=

√√√√3

2
vp

Thus, the average kinetic energy per particle is:

1

2
mpv

2
rms =

3

2
k〈T 〉 (7.11)

The total number of particles in a star of mass M is M/mp; thus we have:

3

2
k〈T 〉M

mp
=

3

10

GM 2

R
. (7.12)

Solving for the average temperature:

〈T 〉 =
1

5

GMmp

kR
. (7.13)

Note the dependence on the stellar mass and radius. Let us work out 〈T�〉:

〈T�〉 =
1

5

6.7× 10−8 · 2× 1033 · 1.7× 10−24

1.4× 10−16 · 7× 1010

cm3 g−1 s−2 g g

erg K−1 cm

〈T�〉 '
0.5× 101

1× 10−6

cm3 g−1 s−2 g g

g cm2 s−2 K−1 cm

〈T�〉 ' 5× 106 K .

7.2 Nuclear Fusion

Returning to the question of the main source of radiant energy in stars,
another possibility which is readily discounted is chemical reactions. Re-
actions between ions and atoms involve exchanges of electrons between
different energy levels. Since the energies of most electronic levels are of
order 1–10 eV, again they provide insufficient energy to power a star like
the Sun for ∼ 1010 years.

On the other hand, the energies that bind protons and neutrons within
atomic nuclei are a million times larger, of order MeV. For example, if we
wanted to break up the He nucleus (also sometime referred to as an alpha
particle) into its constituents two protons and two neutrons, we would need
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to supply ∼ 27 MeV. It follows that the inverse reaction, whereby four
hydrogen nuclei fuse together to form a He nucleus (plus a number of low
mass remnants) will release ∼ 27 MeV. This energy is the binding energy
of the He nucleus, and manifests itself as the mass difference between four
H nuclei (4.03 unified atomic mass units or 4.03 u) and one He nucleus
(4.00 u). This mass difference ∆m = 0.029 u, or ∼ 0.7% of the rest mass
of four H nuclei, corresponds to an energy E = ∆mc2 = 26.7 MeV, which
is released by the nuclear fusion process.

Even if only 10% of the Sun’s mass is converted from H into He, the energy
generated would be:

E = 0.1M� · 0.007 · c2 = 7× 10−4 · 2× 1033 ·
(
3× 1010

)2
g · cm2 s−2

E = 1.26× 102−4 +33 +20 = 1.26× 1051 erg

Thus the nuclear timescale τnuclear ∼ 103 × τKH, or τnuclear ∼ 1010 years,
consistent with the age of the solar system.

The process of nuclear fusion is not limited to 4 1
1H→ 1 4

2He (using the stan-
dard notation A

ZX, where A is the mass number (total number of protons
+ neutrons), Z is the atomic number (i.e. the number of protons, giving
the total positive charge of the nucleus in units of e), and X is the chemical
symbol for the element under consideration). Three 4

2He nuclei can fuse
to give 12

6C, in what is known as the triple alpha process. The addition
of an alpha particle to 12

6C produces 16
8O, and the subsequent incorpora-

tion of additional alpha particles into the nucleus produces the so called
alpha-capture elements, Ne, Mg, Si, S and so on.

The process can continue so long as it is exothermic, that is so long as the
mean mass per nucleon of the final fusion product is lower than that of the
fusing nuclei. The binding energy per nucleon curve (see Figure 7.2) reaches
a peak near Fe (hence the term Fe-peak). Fusion of Fe-peak elements
to form elements of higher mass is an endothermic process requiring an
additional supply of energy (and conversely, energy can be released by
the fission of these heavier nuclei into lighter ones, as in a nuclear power
station). The astrophysical production of these heavier elements is thought
to occur during late stages of stellar evolution.

5



Figure 7.2: Left: Binding energy per nucleon as a function of mass number A. Right:
Close-up near the iron peak. 62

28 Ni has the highest binding energy per nucleon of any
isotope of any element.

7.2.1 Quantum Mechanical Tunnelling

The nucleosynthesis of the common elements of the Periodic Table in stars
is a good example of the fundamental relevance of quantum mechanics to
our everyday world. In order for two nuclei to fuse, they must come suffi-
ciently close together for the short-range strong nuclear force to overcome
the Coulomb repulsion between the two positively charged particles. In
the classical description, this would require kinetic energies correspond-
ing to temperatures much higher than those found even in the interiors of
stars. Only in the quantum-mechanical description of the process, can the
reaction take place at stellar temperatures.

We can estimate the temperature required in the classical treatment by
equating the mean velocity between two nuclei to the potential energy of
the Coulomb barrier at the turn-around point (see Figure 7.3):

1

2
µmv

2
rms =

3

2
kTclass =

1

4πε0

Z1Z2e
2

r
(7.14)

where ε0 is the permittivity of free space [the constant that relates elec-
tric charge to mechanical quantities, defined by Coulombs law which gives
the force between two electric charges separated by a distance r as FC =
(1/4πε0) (q1q2/r

2)], Zi e is the charge of each nucleus, and µm is the reduced

6



P
o

te
n

ti
al

 E
n

er
g

y
 U

(r
) 

 (
M

eV
)

Distance (fm)

Coulomb repulsion
(

1
r

)

Figure 7.3: The Coulomb barrier classically prevents low-energy particles from approach-
ing each other. The nuclear potential is represented here as a square well. In this example,
the values shown are those appropriate to the 12

6 C + 4
2 He→ 16

8 O fusion reaction. The rel-
ative energy of ∼ 300 keV corresponds to the Gamow-peak energy described below.

mass of the two colliding particles.1 Thus,

Tclass =
Z1Z2e

2

6πε0 k r
∼ 1010 K (7.15)

if r ∼ 10−13 cm (1 fm), the typical nuclear radius. The value of 〈Tclass〉 is
three orders of magnitude higher the central temperature of the Sun; even
allowing for the high velocity tail of a Maxwell-Boltzmann distribution,
an insufficient number of particles would penetrate the Coulomb barrier in
classical physics to power the Sun’s luminosity.

Quantum-mechanically, however, the two nuclei may find themselves within
range of the strong nuclear force even if their kinetic energy is insufficient
to overcome the Coulomb barrier, due to the inherent uncertainties in their
positions and momenta given by Heisenberg uncertainty principle:

∆px ∆x ≥ h̄

2
.

The distance of interest here is the de Broglie wavelength associated with
a particle, λ = h/p. Rewriting the mean kinetic energy in terms of the
momentum:

1

2
µmv

2
rms =

p2

2µm
1We have already encountered the concept of reduced mass for a two-body problem in Lecture 4,

where it was defined as µ = m1 ·m2/(m1 +m2).
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we can equate potential and kinetic energies at r = λ:

Z1Z2e
2

4πε0 λ
=

p2

2µm
=

(h/λ)2

2µm
(7.16)

or

λ =
2πε0h

2

µmZ1Z2e2
. (7.17)

Substituting λ for r in eq. 7.15, we find:

Tquantum =
Z2

1Z
2
2e

4 µm
12π2ε20h

2k
. (7.18)

In the case of two protons, Tquantum ' 107 K, comparable to the tempera-
ture in the core of the Sun.

7.3 Nuclear Reaction Rates

While nuclear fusion reactions can in principle supply the energy that
makes the stars shine, we still need to consider quantitatively the rate
at which such reactions occur in stellar interiors. In general terms, the
rate at which a given nuclear reaction will proceed (number of reactions
per unit volume per unit time) will depend on: (i) the volume density of the
particles involved, (ii) their energy distribution (which will determine how
closely two particles can approach each other), and (iii) the cross-section,
or probability, of interaction.

With the Maxwell-Boltzmann distribution in energy terms:

nE dE =
2n

π1/2

1

(kT )3/2
E1/2 exp[− E

kT
] dE , (7.19)

the reaction rate defined as above can be written as:

rit =
∫ ∞

0
nint σ(E) v(E)

nE
n
dE , (7.20)

where ni and nt are the volume densities of incident and target particles
respectively, v(E) is the particle velocity, and σ(E) is the cross-section for
the interaction.

In order to evaluate this integral, we need to know the functional form of
σ(E). A great deal of effort is devoted to the calculation and laboratory

8



measurement of nuclear cross-sections, which can have quite complicated
functional forms. But we can still make some general considerations about
the overall behaviour of σ(E) and rit.

We saw that the quantum-mechanical size of a particle, its de Broglie
wavelength, is inversely proportional to its momentum, λ = h/p. Thus, the
cross-sectional area for interaction may reasonably be expected to have a
σ(E) ∝ 1/E dependence. But the probability of quantum tunneling is also
related to the ratio of the Coulomb barrier potential energy to the particle
kinetic energy. This second factor gives rise to an exponential dependence
of the cross-section on the energy. Taken together, these effects give rise
to the traditional form of the cross-section:

σ(E) =
S(E)

E
exp[−bE−1/2] . (7.21)

where S(E) is a slowly varying function of E. Combining 7.21 and 7.20,
we find:

rit =

(
2

kT

)3/2 nint
(µmπ)1/2

∫ ∞
0
S(E) exp[−bE−1/2] exp[− E

kT
] dE , (7.22)

where b is a constant that includes the charge and the mass of the particles:

b =
π µ1/2

m Z1Z2 e
2

√
2 ε0 h

The important thing to appreciate is that there are two competing energy
dependencies in the integral at 7.22. The exp[−E/kT ] is the decreasing
number of particles with high energies in the tail of the Maxwellian distri-
bution (eq. 7.19). On the other hand, the probability of tunnelling through
the Coulomb barrier increases at high energies as indicated by the term
exp[−bE−1/2]. The net result of combining these two functions is a strongly
peaked dependence of the reaction rate on energy, as shown in Figure 7.4.
Thus, the greatest contribution to the reaction rate integral is from a rel-
atively narrow energy range that depends on the temperature of the gas,
and the charges and masses of the nuclei involved. By setting drit/dE = 0,
we find that the peak of the Gamow curve (so named from the Russian
physicist George Gamow who for a period in the late 1920s and early1930s
worked with Rutherford at the Cavendish Laboratory) occurs at energy:

E0 =

(
bkT

2

)2/3
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Figure 7.4: The red curve is the product of the Maxwell-Boltzmann distribution (number
of particles per unit energy interval, shown in green) with the tunnelling probability of
the nuclei through their Coulomb barrier (dimensionless, shown in blue). The curve is
strongly peaked: this is the energy range over which the nuclear reaction is most likely
to take place. At higher energies the number of particles becomes insignificant, while
at lower energies the tunnelling through the Coulomb barrier becomes improbable. This
Figure refers to the 12

6 C + 4
2 He→ 16

8 O fusion reaction at T = 2× 108 K; the Gamow peak
is at an energy E ' 300 keV, much larger than 〈E〉 = 3kT/2 = 26 keV.

Before moving on to consider the nuclear reaction rates which are most
important for stellar nucleosynthesis, we mention two effects which add
to the above treatment of the reaction rates. First, the cross sections of
some nuclear reactions exhibit resonances—small energy intervals where
the likelihood of interaction is boosted significantly by energy levels within
the nucleus. Second, at the high temperatures of stellar interiors, the high
densities of free electrons can partially shield the positive nuclear charge.
The net effect of this electron screening is to reduce the Coulomb barrier,
thereby enhancing the reaction rates.

7.4 Stellar Nucleosynthesis

We now consider the main pathways for energy generation by nuclear re-
actions in stellar interiors. For each nucleosynthetic reaction, we are inter-
ested in the amount of energy released per second per unit mass of nuclear
fuel. For this calculation, it is most convenient to express the reaction rate
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in power-law form:
rit ' r0XiXt ρ

γ T β (7.23)

where r0 is a constant, Xi,t are the mass fractions of the two particles,
the exponent of the density dependence is normally γ = 2 for two-body
collisions, whereas the power-law dependence on the temperature β can
range from ∼ 1 to >∼ 40. If E0 is the energy released per reaction, then the
rate of energy release per unit mass of nuclear fuel is:

Eit =

(E0

ρ

)
rit

erg s−1 cm−3

g cm−3
⇒ erg s−1 g−1 (7.24)

or
Eit = E0 r0XiXt ρ

α T β (7.25)

where α = γ − 1.

7.4.1 The Proton-Proton Chain

We begin with the main reaction chain which powers stars on the Main
Sequence, hydrogen burning:

41
1 H→ 4

2 He + 2e+ + 2νe + 2γ

with E0 = 26.73 MeV. The two positrons subsequently annihilate with free
electrons: e+ + e− = 2γ. The reaction can proceed through three channels
(it is quite a common situation in nuclear reactions that different pathways
can lead to the same end result), as shown in Figure 7.5. The balance
between PP I and PP II varies with temperature, with the former preferred
at T <∼ 1.5×107 K; the values indicated in Figure 7.5 are those appropriate
to the central temperature of the Sun, T = 1.57 × 107 K. PP III is never
very important, but it is a source of high energy neutrinos.

Each step in the PP chain (and indeed in any chain) has its own reaction
rate, determined by the Coulomb barriers and cross-sections involved. The
slowest step in the PP chain is the first one because it is necessary for one
of the protons to undergo a β+ decay: p+ → n + e+ + νe via the weak
nuclear force. On average, a proton in the Sun will undergo one such decay
only once in the lifetime of the Sun (∼ 1010 years)! All the subsequent steps
are much quicker. For the pp-chain:

Epp ∝ X2 ρ T 4 erg s−1 g−1 ,

with the neutrinos carrying off ∼ 1% of the energy generated.
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Figure 7.5: The three proton-proton chains. The branching ratios are appropriate to the
temperature in the core of the Sun.

7.4.2 The CNO Cycle

When C, N and O are present and the temperature is sufficiently high, He
can be synthesised from four H nuclei through a series of pathways known
as the CNO cycle. C, N and O act as catalysts: they make He fusion
possible through a series of reactions, but their number is conserved in the
cycle. The two main pathways of the CNO cycle are as follows:

with the pathway on the right occurring only ∼ 0.04% of the time. For the
CNO cycle:

ECNO ∝ X XCNO ρ T
17 erg s−1 g−1 .

Note the much steeper dependence on T than the p-p chain. The two
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functions E = f(T ) are shown in Figure 7.6 from where it can be seen that
He fusion proceeds mostly via the CNO cycle in stars with M >∼ 2M�, and
via the p-p chain in cooler stars.

Figure 7.6: The temperature dependence of the energy generation rates of the p-p chain
and CNO cycle.

Of course, in stars of lower metallicity, the cross-over point moves to higher
temperatures (XCNO is lower). In the first stars, which presumably con-
sisted just of H and He synthesised in the Big Bang, only the p-p chain
was operative.

A consequence of the steep T dependence of ECNO is that in massive stars
H fusion must be more concentrated in the inner core of the star than
is the case for lower mass stars where the p-p chain is the main channel.
A second point of note is the following. As the name implies, the CNO
cycle is a cyclic process that quickly reaches equilibrium. This means
that: (a) the total number of C+N+O ions is conserved, and (b) each
step has to proceed at the same rate. Given that rate for each step is
ri→j ∝ ni · σi→j, the requirement r = constant implies that ni ∝ 1/σi→j.
In other words, steps with smaller cross-sections require proportionally
higher concentrations of the ions involved to keep the cycle in equilibrium.
In particular, σ(14N) ' 1/30σ(12C), so that in equilibrium n14N ' 30×n12C.
In other words, the CNO cycle piles up 14N at the expense of 12C and 16O,
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and is in fact the main channel for the nucleosynthesis of N in stars.

7.4.3 Helium Burning

The fusion of four H nuclei to form He, via either process, increases the
mean molecular weight of the gas µ (defined so that the mean particle mass
in a gas is 〈m〉 = µmH , where mH is the mass of the hydrogen atom). From
the ideal gas law:

P =
ρkT

µmH

the pressure decreases and is no longer able to support the star against
the pull of gravity. As a result, the stellar core contracts, raising both the
temperature and the density of the gas (recall the virial theorem at the
beginning of this lecture). When the temperature and density become suf-
ficiently high, He nuclei can overcome their Coulomb barrier and combine
to form 12C by capturing three 4He nuclei, as follows:

The lifetime of 8Be is very short, ∼ 3× 10−16 s; consequently, this is really
a three-body interaction, with a reaction rate r ∝ (ρY )3, where Y is the
mass fraction of He. This triple alpha reaction was predicted by Fred Hoyle
(a previous director of the Institute of Astronomy) in 1954, based on the
high abundance of C in the Sun and H ii regions like the Orion nebula. It
produces C from He nuclei bypassing completely the intermediate elements
Li, Be, B, and it explains why C is 105–107 times more abundant that Li,
Be and B in the Universe. The energy generation rate of the triple alpha
reaction has an extraordinarily steep dependence on T :

E3α ∝ Y 3 ρ2 T 40 erg s−1 g−1 .

Once sufficient quantities of 12C have been synthesised via the triple al-
pha reaction, heavier elements can be formed from 12C via the capture of
additional 4He nuclei:

12
6 C +4

2 He→16
8 O + γ
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and
16
8 O +4

2 He→20
10 Ne + γ

7.4.4 Carbon and Oxygen Burning

Higher and higher temperatures are required to overcome the increasing
Coulomb barriers as heavier elements are synthesised. At temperatures
T ≥ 6× 108 K, as found in the cores of stars with mass M ≥ 8M�, carbon
burning can proceed via several reactions:

When T ≥ 1× 109 K, oxygen can burn:

When T > 1.5 × 109 K, we find from Wien’s law (eq. 2.11), the maxi-
mum emission occurs at λ = 2×10−2 Å. The corresponding photon energy,
0.6 MeV, is sufficient to photo-disintegrate heavy nuclei, creating a mix-
ture of massive nuclei, p, n, He nuclei, and photons. These can facilitate
reactions (silicon burning) that ultimately lead to the formation of stable
elements of the iron group, at the peak of the binding energy per nucleon
curve (Figure 7.2).

Each of the steps in the nucleosynthesis chain we have described, starting
from H and ending at the Fe-peak, requires progressively higher tempera-
tures, because of the increasing height of the corresponding Coulomb bar-
rier. Thus, the core has to contract before the next step can start. Each
successive reaction also has a steeper temperature dependence. Thus, it
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Figure 7.7: The stratified structure of the core of a massive star.

will take place in a more concentrated region within the core of the star,
and will involve less mass. Therefore, at the end of the process, the interior
of the star is stratified, as shown in Figure 7.7; this structure is sometimes
referred to as an onion-skin structure.

Furthemore, each step in the nucleosynthesis of elements from H to Fe
extracts less energy from the system (notice that the biggest individual
‘jump’ in Figure 7.2 occurs when He is synthesised). Consequently, the
reaction rate has to be higher and fusion faster to provide the luminosity.
Another factor is that at T > 109 K, neutrinos carry away larger and larger
fractions of the energy produced. Neutrinos travel right through the star
without interacting with the plasma; this has the effect of reducing the
net energy production by nuclear burning. Thus, each successive nuclear
burning phase lasts a progressively shorter period of time.

Table 7.1 summarises the main nuclear burning processes.

Table 7.1 Main nuclear burning processes

Fuel Process T 1
thresh (K) Products E/nucleon2 (MeV) Timescale3 (yr)

H p-p ∼ 4× 106 He 6.55
H CNO 1.5× 107 He 6.25 1× 107

He triple-α 1× 108 C, O 0.61 1× 106

C C + C 6× 108 O, Ne, Na, Mg 0.54 300
O O + O 1× 109 Mg, S, P, Si ∼ 0.3 0.5
Si Nucl. equil. 3× 109 Co, Fe, Ni <∼ 0.2 0.005 (2 days!)

Notes:
1 Threshold temperature
2 Energy released per nucleon
3 Typical timescale for a 15M� star.
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7.5 Neutron Capture

We conclude our description of stellar nucleosynthesis with a brief mention
of the mechanism whereby elements heavier than Fe are thought to be
produced in stars.

As we have seen, at T >∼ 1.5× 109 K photodisintegration of nuclei becomes
important and creates a mixture of neutrons, protons and other nuclei.
Neutrons play an important role here. Since they do not experience a
Coulomb barrier, they can easily penetrate the nuclei of even fully ionised
heavy elements, such as Fe+26. If they are captured by the nucleus, new
neutron-rich isotopes can be produced. Such isotopes can be either stable
or unstable.

It is important to distinguish between slow and rapid neutron capture
(termed the s-process and the r-process), depending on the relative timescales
of β-decay and neutron capture. In the example of the s-process shown in
Figure 7.8, 56Fe absorbs a neutron to form 57Fe. Subsequent capture of
two more neutrons leads to the formation of 59Fe. Of the four Fe isotopes
shown, the three lighter ones are stable, but 59Fe is unstable, with a half-
life of 44.5 days. Thus, if the flux of neutrons is not high and the interval
between successive n-captures is longer than the half-life of 59Fe, there is
time for 59Fe to decay to 59Co by β-decay (n→ p + e− + νe). The pro-
cess can continue to form higher and higher mass elements, as shown in
Figure 7.8.

Figure 7.8: Example of the nucleosynthesis of 59Co, 60Ni and 63Cu from 56Fe via slow
neutron capture.
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Figure 7.9: Example of the nucleosynthesis of 197Au (stable gold) from 188Yb via rapid
neutron capture.

On the other hand, if the flux of neutrons is sufficiently high and the
time interval between subsequent neutron captures is small compared to
the half-life of the isotopes concerned, super-neutron-rich isotopes can be
formed, as in the example of the r-process shown in Figure 7.9. When the
neutron flux stops, these super-neutron-rich isotopes will undergo a series
of β-decays until a stable isotope is reached.

Trans-Fe-peak elements can be formed by either s- or r-process nucleosyn-
thesis, or both, depending on the stability of their neighbours in the Peri-
odic Table. Typical s-process elements include Cu and Pb, while Eu is the
prototypical signature of r-process nucleosynthesis in stellar spectra (see
Figure 7.10). It is generally though that s-process nucleosynthesis takes
place primarily in AGB stars, while the r-process occurs mainly in super-
nova explosions and, as now confirmed observationally, in the explosion
accompanying the merger of two neutron stars.
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Figure 1.— Recent abundance determinations in five r-process rich stars, based upon new atomic
lab data, compared with two solar system r-process only predictions. The abundances in each star
have been normalized to the element Eu. After Sneden et al. (2009). Reproduced by permission of
the AAS.

heavier stable n-capture elements (i.e., Ba and above) are consistent with the relative
solar system r-process abundance distribution (see also Sneden et al. 2009). Earlier
work had demonstrated this agreement for several r-process rich stars (where [Eu/Fe]
! 1), including CS 22892-052, and the addition of still more such r-process-rich stars
supports that conclusion.

3.2. Light n-capture Elements

While the heavier n-capture elements appear to be consistent with the scaled solar
system r-process curve, the lighter n-capture elements (Z < 56) seem to fall below that
same solar curve. One problem in analyzing this region of interest is that there have
been relatively few stellar observations of these lighter n-capture elements until now.
With the limited amount of data it is not yet clear if the pattern is the same from
star-to-star for the lighter n-capture elements in these r-process rich stars.

Figure 7.10: Relative abundances of several r-process elements in five Galactic halo stars
(Cowan et al 2011).
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