
M. Pettini: Introduction to Cosmology — Lecture 16

DARK MATTER

Dark matter: Do we need it? What is it? Where is it? How much? 1

16.1 Introduction

The term ‘dark matter’ is rather ambiguous, because in its most general
sense it simply indicates a mismatch between the amount of matter known
(or at least suspected) to be present and the amount of matter we see in
a given environment or volume. In this sense, matter than emits mostly
at infrared wavelengths, such as interstellar dust or brown dwarfs2 would
have qualified as dark matter before the advent of infrared astronomy.

Let us try to be a little more quantitative and return to Table 1.1:

Table 16.1: Cosmic Inventory

Component Ω (ρ/ρc)

Dark Energy 0.691± 0.006

Matter (baryonic and non-baryonic) 0.312± 0.009

Baryons (Total) 0.0488± 0.0004

Baryons in stars and stellar remnants ∼ 0.003

Neutrinos ∼ 0.001

Photons (CMB) 5× 10−5

Comparing the entries in the third and fourth row, we see that stars and
their remnants (mostly white dwarfs) account for less than 10% of the

1From “The Dark Matter Rap: Cosmological History for the MTV Generation” by David Weinberg
(http://www.astronomy.ohio-state.edu/∼dhw/Amusements/)

2Substellar objects whose core does not reach the high temperatures required to ignite the fusion of
H nuclei. You should have encountered brown dwarfs in the Stellar Structure and Evolution course.
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baryons that make up our Universe, given the value of Ωb,0 deduced from
the relative abundances of light elements created in Big Bang Nucleosyn-
thesis (Lecture 8), and from the fluctuations in the Cosmic Microwave
Background (Lecture 10). This is evidence for baryonic dark matter.

We suspect that most of the ‘missing’ baryons may be in the form of
intergalactic gas, some of which we see as H i absorption lines in the spectra
of distant quasars (Lecture 13). A fraction of this gas may be at high
temperatures, T ∼ 105–107 K, and, if so, it radiates and absorbs light
mostly at far-ultraviolet and soft X-ray wavelengths which are difficult to
detect—this is the so called WHIM (Warm-Hot Intergalactic Medium).
Astronomers are fussy,3 and strive for a complete and accurate census of
all objects of interest, in this case baryons. Hence the on-going efforts to
detect the WHIM and to quantify the space density of substellar objects.

In this lecture, however, we will focus on non-baryonic dark matter, whose
existence is indicated by the finding that Ωm,0 ' 6 Ωb,0 (second and third
row in Table 16.1). The term dark matter is of more consequence when
applied to non-baryonic dark matter, because in this sense we mean some
form of matter that does not interact with electromagnetic radiation, and
therefore we’ll never be able to see, at least in a conventional sense. And
yet, there is a great deal of evidence for the existence of dark matter.
In the cases we are going to consider here, the evidence comes from the
comparison between gravitational mass and luminous mass on a variety of
scales, from galaxies to rich clusters.

16.1.1 Mass-to-Light Ratio

As a convenient measure for comparing gravitational mass with luminous
mass on different scales, we use the mass-to-light ratio in the B-band, which
encompasses photon wavelengths between ∼ 3800 Å and ∼ 4800 Å. The
mass-to-light ratio is measured in solar units: M�/L�,B. Thus, for example,
the luminosity of the Milky Way galaxy is estimated4 to be LMW,B '
2.3 × 1010 L�,B. If the Milky Way consisted exclusively of solar-type stars
we would conclude that it has a mass MMW ' 2.3× 1010 M�.

3Well, at least some of them are.
4As we view our Galaxy from within, its luminosity is less straightforward to determine than those of

external galaxies.
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This is of course far too simplistic. Stars are born with a range of masses,
and it is the mass that determines both the luminosity and the lifetime
of a star. For any reasonable form of the stellar initial mass function,5

most of the luminosity of a stellar population is contributed by the most
massive stars, which have M/LB ∼ 10−3 M�/L�,B, while most of the mass
is in the far more numerous and fainter low-mass stars which can have
M/LB ∼ 103 M�/L�,B. This is a consequence of the steep dependence of
stellar luminosity on mass: L ∝M∼3.5.

Within 1 kpc of the Sun, the average stellar mass-to-light ratio is found to
be:

〈M/LB〉 ≈ 4 M�/L�,B (16.1)

As an aside, converting to S.I. units the above mass-to-light ratio corre-
sponds to∼ 170 000 kg watt−1; while this may appear very inefficient, recall
that the mass of the Sun will support its luminosity for ∼ 10 Gyr.

In Lecture 6 we saw how the luminosity function (LF) of galaxies is now
being determined from ever-increasing samples of galaxies and in different
wavelength bands. Integrating the LF of galaxies within hundreds of Mpc
from our location, it is found that the total stellar luminosity density in
the B-band is:

jstars,B = 1.1× 108 L�,B Mpc−3 , (16.2)

to which we can therefore associate a mass density:

ρstars,B = 1.1× 108 L�,B · 4 M�/L�,B ≈ 4.4× 108 M�Mpc−3 , (16.3)

under the (admittedly rather uncertain) assumption that the typical stel-
lar mass-to-light ratio found within 1 kpc of the Sun applies, on aver-
age, to most galaxies. Thus, in units of the critical density ρc = 1.36 ×
1011 M�Mpc−3 (eq. 1.17), Ωstars ≈ 3×10−3, with some degree of uncertainty
due to our lack of knowledge of the stellar M/LB in different galaxies.6

5Again, you will have been introduced to the IMF in the Stellar Structure and Evolution course.
6Given that stars of different masses not only have widely different different M/LB ratios but also

very different lifetimes, the average 〈M/LB〉 of a galaxy will depend on the ages of its stellar populations.
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16.2 Galaxy Rotation Curves

Most of the stars and gas in a spiral galaxy are found within a thin disk that
rotates about the centre of the galaxy. With spectroscopy, we can measure
the component of the gas and stars velocity projected along the line of sight
to us, as a function of location within the disk. On one side of the disk,
the stars and gas will appear blueshifted relative to the galaxy systemic
velocity, while on the other side they will be redshifted; by tracking the
blue/redshift across the galaxy it is therefore possible to determine the
rotation speed v(R) of the galaxy as a function of radial distance R from
the nucleus. This is commonly referred to as the galaxy rotation curve.
Specifically:

v(R) =
vr(R)− vgal

sin i
=

vr(R)− vgal√
1− b2/a2

(16.4)

where vr(R) is the velocity deduced from the Doppler shift of spectral
lines from stars/gas in the disk, vgal is the systemic velocity of the galaxy
indicated by the Doppler shift of the nucleus, and b/a = cos i is the ratio
of the minor to the major axis of the ellipse that a disk with inclination
angle i to our line of sight projects on the plane of the sky.

Figure 16.1: M31, the Andromeda galaxy, photographed with a Canon 200 mm telephoto
lens. M31 is the nearest major galaxy to the Milky Way.
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What behaviour might we expect for the rotation curves of spiral galaxies
as we move away from the centre? A star moving in a circular orbit about
the nucleus experiences an acceleration:

a =
v2

R
(16.5)

provided by the gravitational attraction of all the matter in the galaxy
internal to radius R, so that:

a =
GM(R)

R2
(16.6)

Combining the two equations, we can solve for v(R):

v(R) =

√
GM(R)

R
(16.7)

Thus, the behaviour of v(R) will depend on the functional form of M(R). If
the density ρ (g cm−3) of matter within R is constant, then M = 4/3πρR3

and therefore
v(R) ∝ R . (16.8)

For a test particle located at sufficiently large R so that M(R) is constant,
we expect

v(R) ∝ 1√
R
. (16.9)

This is often referred to as ‘Keplerian rotation’, in analogy with the orbits
of planets around the Sun, which accounts for 99.8% of the mass of the
solar system. Thus, for Keplerian rotation, we expect the rotation speed
to decrease as we move well beyond the optical dimensions of a galaxy.

Finally, for a distribution of matter in hydrostatic equilibrium, such that
ρ ∝ 1/R2, the mass contained within a shell of thickness dR at distance R
is M = 4πρR2dR, and therefore:

v(R) = constant (16.10)

The first galaxy for which the rotation curve was measured out to distances
well beyond the optical disk of stars and ionised gas was M31, our closest
large galaxy at a distance of 780 kpc. As can be seen from Figure 16.2,
the rotational velocity increases from the centre to vmax

rot ' 255 km s−1 at
R = 8–10 kpc, and then flattens at vrot ' 230 km s−1 out to the limit to
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Figure 16.2: The rotation curve of the Andromeda galaxy rises from the centre to R '
10 kpc, and then remains approximately constant out to R = 30 kpc, indicating that the
mass of M31 continues to increase up to at least that radius. Figure reproduced from
Roberts & Whitehurst (1975) who combined their radio observations of the 21 cm emission
line of interstellar neutral hydrogen with earlier measurements of nebular emission lines
from H ii regions by Rubin & Ford (1970).

the data, at R = 30 kpc. More recent observations have shown that there
is still no hint of a drop in vrot out to R = 40 kpc.

The behaviour exhibited by the M31 rotation curve turns out to be common
to most spiral galaxies. In contrast, the integrated stellar light of the disks
of spiral galaxies generally falls exponentially with R, that is:

I(R) = I(0) exp

(
− R
Rs

)
(16.11)

where I is the surface brightness (normally measured in magnitudes per
square arcsecond) and Rs is a characteristic scale-length. For M31, Rs '
6 kpc. Thus, beyond 20 kpc (R > 3Rs) for example, only ∼ 3% of the
light remains, indicating that beyond a few scale lengths the mass of stars
inside R becomes essentially constant. In contrast, the gravitational mass
enclosed, as indicated by the rotation curve, continues to increase (see
Figure 16.2). Clearly, there is dark matter on galactic scales. While some
of this dark matter may be baryonic, baryons are unlikely to make up the
shortfall. In our own Galaxy and M31, the mass of atomic and molecular
gas amounts to only 10–20% of the stellar mass.

Returning to our Galaxy, eq.16.7 can be used to estimate the mass enclosed
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within R from the Milky Way flat rotation curve:

M(R)MW = 9.6× 1010 M�

(
v

220 km s−1

)2 (
R

8.5 kpc

)
(16.12)

where the scaling is appropriate to the Sun’s location in the Milky Way
disk. Dividing by the Milky Way luminosity in the B band, we deduce our
Galaxy’s mass-to-light ratio as a function of distance:

〈M/LB〉 ' 50 M�/L�,B

(
Rhalo

100 kpc

)
(16.13)

So, how far does the Milky Way dark halo extend? As we move to larger
distances from the disk, we run out of ‘test particles’ as stars in the halo
become more and more scarce. The furthest the MW halo has been probed
with stellar orbits is R ' 50 kpc. At yet larger distances, we can use
arguments based on the motions of satellites orbiting our Galaxy, although
with increasing uncertainty. The most recent measurements of relevance to
this problem are collected in Figure 16.3, from which the authors conclude
that the halo does indeed extend to ∼ 100 kpc; the best fit to the data
indicates a dynamical mass of the Milky Way:

MMW
dyn ' 1× 1012 M� . (16.14)

Figure 16.3: The circular velocity profile of the Milky Way galaxy. Data points are
labelled with the initials of the authors and the year their measurements were published.
The red and green curves show the expectation for v(R) for two values of the dynamical
mass of the Milky Way and for two values of a concentration parameter describing the
radial distribution of dark matter, as indicated in the top right corner of the plot. (Figure
reproduced from Deason et al. 2012).
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Figure 16.4: Mass-to-light ratio in different galactic environments, as indicated. (Figure
reproduced from Dabringhousen et al. 2008).

While some of this mass may be in baryons, it is generally thought that
the high values of M/LB implied reflect the fact that the Milky Way disk
lies at the centre of a spherical halo of non-baryonic dark matter.

The mass-to-light ratio of a galaxy varies with galaxy type and with loca-
tion within a galaxy. The inner regions (bulges) of spirals and ellipticals
are dominated by baryons. At the other end of the luminosity scale, dwarf
galaxies are dominated by dark matter, reaching M/L ratios of several hun-
dred (see Figure 16.4). There is no evidence for dark matter in globular
clusters, even though they have the same luminosity as dwarf spheroidal
galaxies. The preponderance of dark matter in dwarf spheroidal galaxies
(which only harbour old stellar populations) has led to searches for gamma-
rays which may be produced by the annihilation of particle-antiparticle
pairs of some non-baryonic dark matter candidates. Some results so far
have been suggestive, but much remains to be done before astronomical
detection of a non-baryonic dark matter signal is established with certainty.

16.3 Dark Matter in Galaxy Clusters

16.3.1 Virial Mass

We have already encountered clusters of galaxies in Lectures 10 and 15.
They are the greatest concentrations of matter in the Universe, consisting
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of up to ∼ 1000 galaxies and ∼ 1 × 1014 M� of hot, X-ray emitting gas
all moving within the same gravitational potential, provided mostly by
the dark matter. By measuring the redshifts of the individual galaxies,
it is possible to determine both the systemic redshift of the cluster and
the velocity dispersion of its constituents. In ‘relaxed’ clusters, that is
clusters which have achieved equilibrium and are no longer expanding nor
contracting, the velocity dispersion of the galaxies is a measure of the depth
of the gravitational potential well within which dark matter, galaxies and
intracluster gas move.

The Caltech astronomer Fritz Zwicky is generally acknowledged as being
the first to realise that galaxies in the Coma cluster are moving too fast
relative to each other to be gravitationally bound by the luminous matter
within the cluster. He concluded that the cluster must contain dark matter
otherwise unaccounted for.

For a system in equilibrium, the virial theorem applies:

−2 〈K〉 = 〈U〉 (16.15)

where K and U are the kinetic and potential energy respectively, and the
brackets denote time averages.

Figure 16.5: Left: The inner region of the Coma cluster imaged with the Hubble Space
Telescope. The cluster lies at a distance of ∼ 100 Mpc from our Galaxy. Right: Fritz
Zwicky, the Swiss astronomer who, while working at Caltech in Pasadena, California
during the 1930s correctly deduced the existence of dark matter in the Coma cluster (and
other rich clusters of galaxies) from the high velocity dispersion of its galaxies.
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For the kinetic energy we can write:

K =
1

2

∑
i

mi|ẋi|2 (16.16)

where mi is the mass of the ith galaxy, observed at position xi within the
cluster. The above equation can be re-written as

K =
1

2
M 〈v〉2 (16.17)

where M =
∑

imi is the mass of all the galaxies in the cluster, and

〈v〉2 ≡ 1

M

∑
i

mi|ẋi|2 (16.18)

is the mean square velocity (weighted by galaxy mass) of all the galaxies
in the cluster.

Similarly, for the potential energy we can write:

U = −1

2
G
∑
i,j
j 6=i

mimj

|xj − xi|
(16.19)

where the factor of 1/2 in front of the double summation ensures that each
pair of galaxies is only counted once. An alternative expression for the
above is:

U = −αGM
2

rh
(16.20)

where α is a numerical factor of order unity that depends on the density
profile of the cluster (typically α ≈ 0.4), and rh is the half-mass radius,
that is the radius of a sphere centred on the centre of mass of the cluster
and within which half of the cluster mass is contained. Using (16.15), we
therefore have:

M 〈v〉2 = α
GM 2

rh
(16.21)

from which we can deduce the mass corresponding to a given 〈v〉 and rh:

M =
〈v〉2 rh

αG
(16.22)

Note the similarity between (16.22) and (16.12) which we used for the Milky
Way (or any other spiral galaxy). In both cases, we estimate the mass of a
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self-gravitating system by multiplying the square of a characteristic velocity
by a characteristic radius (and dividing by the gravitational constant).

Let us apply eq. 16.22 to the Coma cluster, repeating the reasoning by Fritz
Zwicky. By measuring the redshifts of hundreds of Coma cluster galaxies,
it is found that the mean redshift is 〈zComa〉 = 0.0232, corresponding to a
recession velocity 〈vr〉 = c 〈z〉 = 6955 km s−1 relative to the Milky Way.
For H0 = 67.5 km s−1 Mpc−1, this gives a distance of 103 Mpc.

We can also measure the one-dimensional velocity dispersion of the galax-
ies, projected along the line of sight to Earth:

σr =
〈

(vr − 〈vr〉)2
〉1/2

= 880 km s−1 (16.23)

If we assume that the velocity dispersion is isotropic (a reasonable assump-
tion for a relaxed cluster), then the 3D mean square velocity we need in
eq. 16.22 is: 〈

v2
〉

= 3 ·
(
880 km s−1

)2
(16.24)

The half-mass radius is trickier. All we can do is measure the half-light
radius and proceed under the assumption that the dark matter (which after
all is what we are trying to measure) and the baryons are not segregated
within the cluster. In this case, rh ≈ 1.5 Mpc. Entering these values in
eq. 16.22 and converting throughout to S.I. or cgs units, we find:

MComa
vir ≈ 2× 1015 M� . (16.25)

More generally:

Mvir ∼ 1.7× 1015 M�

(
σr

1000 km s−1

)2 (
rh

1 Mpc

)
. (16.26)

For comparison, the total stellar mass of Coma is MComa
stars ≈ 3 × 1013 M�,

i.e. stars only make up less than 2% of the mass of the cluster. The X-ray
emitting intracluster gas contributes ∼ 10%, with MComa

gas ≈ 2 × 1014 M�.
The rest is dark matter. Overall, the mass-to-light ratio measured in Coma
is: 〈

M

LB

〉
≈ 2× 1015 M�

8× 1012 L�,B
≈ 250 M�

L�,B
(16.27)

i.e. ∼ 5× greater than the M/LB we deduced for the Milky Way (and
other spirals).
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16.3.2 Hydrostatic Equilibrium

An alternative method to determine the mass of galaxy clusters uses the
temperature and density of the hot intracluster gas (see Figure 16.6) which,
together with its chemical composition, can be recovered by modelling the
continuum (bremsstrahlung) + metal line emission X-ray spectrum of the
gas. If the gas is supported by its own pressure against gravitational infall,
it must obey the equation of hydrostatic equilibrium:7

dP

dr
= −GM(r) ρ(r)

r2
, (16.28)

where P is the pressure, ρ is the density, and M is the total (dark matter
+ baryons) mass inside a sphere of radius r. For an ideal gas, we also have:

P =
ρkT

µmp
, (16.29)

where mp is the proton mass and µ is the mean molecular weight, so that
the average mass per particle is 〈m〉 = µmH (µ ' 0.6 for a fully ionised
plasma of solar composition).

Combining the last two equations we can solve for the cluster mass:

M(r) =
k T (r) r

Gµmp

[
−d ln ρ

d ln r
− d lnT

d ln r

]
(16.30)

7You will have encountered this equation in the Stellar Structure and Evolution course.

Figure 16.6: Left: The galaxy cluster Abell 383 imaged with the Hubble Space Telescope
Advanced Camera for Surveys. This cluster is one of the largest concentrations of matter
in the local Universe (z = 0.1887), with a mass M ' 7.5 × 1014 M�. Right: The X-
ray image of the cluster (shown here superimposed on the HST image taken in visible
light) obtained by the Chandra observatory shows diffuse emission from intracluster gas
at temperatures T ∼ 5× 107 K.
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Thus, by tracking T , ρ and the composition of the cluster gas (which affects
µ) from the cluster core to the outskirts, it is possible to deduce the cluster
mass. For the Coma cluster, this method gives:

MComa
hydro = (1− 2)× 1015 M� (16.31)

consistent with the value MComa
vir ≈ 2 × 1015 M� derived in section 16.3.1

(eq. 16.25). The corresponding mass-to-light ratio M/LB ∼ 250 M�/L�,B
of Coma turns out to be typical of most rich clusters of galaxies.

In Lecture 10.7.1 we discussed the Sunyaev-Zel’dovich effect in clusters
of galaxies (see Figure 16.7), and found that the CMB photons intensity
decrement is proportional to the integral of the electron density along the
line of sight through the cluster:

∆IRJ
ν

IRJ
ν

= −2

∫
kT

mec2
σT ne dl . (16.32)

Thus, if we know the mass of the cluster from either virial or hydrostatic
arguments, we can calculate the baryon fraction fb of the intracluster gas.
Typically, fb ≈ 10 − 12%, confirming the conclusion that non-baryonic
dark matter is the dominant contributor to the gravitational potential of
clusters.

Figure 16.7: Sunyaev-Zel’dovich maps of three clusters of galaxies, showing the temper-
ature difference of the measured CMB relative to the average CMB temperature (or, at
a fixed frequency, the difference in radiation intensities). The black ellipse in each im-
age shows the instrumental resolution. For each of the clusters shown here, the spatial
dependence of the SZ effect is clearly visible. (Figure reproduced from Grego et al. 2001).
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16.4 Gravitational Lensing

16.4.1 Brief History

In Einstein’s theory of General Relativity, all mass-energy generates a cur-
vature in its surrounding spacetime. A light ray traversing a region where
the gravitational field has a gradient, for example near a point mass, will
bend towards the mass. This is gravitational lensing, in analogy with con-
ventional optics.

In 1919 Einstein calculated that the positions of stars whose light-rays just
graze the surface of the Sun would be displaced from their normal position
on the sky by an angle:

α =
4GM�
c2 R�

= 1.7 arcsec . (16.33)

Photographs taken by the Cambridge astronomer Arthur Eddington dur-
ing the solar eclipse of 29 May 1919 confirmed the GR prediction with an
accuracy of ±30%, sufficient to establish that the angular shift was twice
that expected from Newtonian gravity. Since 1919, eq.16.33 has been veri-
fied to within ∼ 0.1%: gravitational lensing is not only a prediction of GR,
but also a sensitive test of GR.

Figure 16.8: Left: Schematic representation of gravitational lensing by a galaxy cluster.
Right : The z = 0.395 galaxy cluster Cl0024+1652 imaged with the Hubble Space Telescope
Advanced Camera for Surveys. With a mass M = 5 × 1014 M�, the cluster acts as
a gravitational lens: the blue arcs in the HST field of view are images of background
galaxies at z � 0.395, stretched and magnified by the curvature of spacetime generated
by the mass of the cluster.
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Figure 16.9: Left: HST image of the ‘Cosmic Horseshoe’, a star-forming galaxy at z =
2.38115 gravitationally lensed into a near-complete Einstein ring by a foreground massive
(M ∼ 6× 1012 M�) red galaxy at z = 0.444. Right : CSWA 20, a blue star-forming galaxy
at z = 1.433 gravitationally lensed into an Einstein cross (four images) by a foreground
massive (M ∼ 4× 1012 M�) galaxy at z = 0.741. These galaxy-scale gravitational lenses
not only give us the means probe the distribution of dark matter in galactic halos, but
also allow astronomers to study the physical properties of high redshift galaxies in much
more detail than is normally the case (i.e. in the absence of gravitational magnification).

Apart from solar system tests, gravitational lensing remained a theoretical
possibility deemed to be beyond experimental verification for sixty years,
until the latter part of last century. In the last ∼ 30 years, gravitational
lensing has grown into a major area of research. Its value is that it allows us
to probe the distribution of matter in galaxies and in clusters independently
of the nature of the matter, in particular independently of whether the
gravitational potential is due to luminous matter or not.

It is customary to distinguish between strong and weak lensing, depending
on the projected distance between the light source and the optical axis
joining the observer with the mass causing the light deflection, i.e. the
lens.

Strong lensing occurs at small angular separations between source and
lens. ‘Einstein rings’, multiple images, highly distorted images and arcs are
all examples of strong lensing by either individual massive galaxies or the
complex mass distribution of rich clusters of galaxies (see Figures 16.8 and
16.9). The first reported example of strong gravitational lensing was the
discovery in 1979 that the quasars 0957+561A,B, separated by 5.7 arcsec
on the sky, are two images of the same source at z = 1.405. The realisation
that the blue arcs often seen in deep images of rich clusters are background
galaxies stretched by gravitational lensing followed soon after, in the mid-
1980s.
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Figure 16.10: Cosmic shear is the weak lensing by the large-scale structure of the Uni-
verse. Left: Light (shown in dark blue) from distant galaxies (red) is constantly being
deflected. Right : The observer sees distorted, correlated, images of the distant galaxies.
The correlation of their shapes depends on the large-scale structure, and therefore cos-
mological parameters that determine the evolution of cosmic structure can be extracted
from statistical analysis of the distortion pattern.

The magnification afforded by gravitational lensing makes it possible to
study distant galaxies in much greater detail than it would otherwise be
possible, and even brings within reach of observation galaxies that would
otherwise be too faint to detect. Many of the highest redshift galaxies
known, at z > 6, were identified from their gravitationally lensed images
in deep exposures of cluster fields.

Weak lensing occurs when the alignment between observer, lens and
source is not close; it produces slightly distorted single images of back-
ground galaxies. The large-scale distribution of galaxies in the Universe
acts as a weak lens, a phenomenon commonly referred to as cosmic shear.
Cosmic shear is analysed by statistical means, averaging over many dis-
torted galaxy images. The effect was first reported in 2000, and has been
studied since then with the aim of realising its potential as a cosmological
tool.

Microlensing is a particular type of strong lensing which occurs when
two stars (at the appropriate distances from Earth) become closely aligned
as seen from Earth due to their relative transverse velocities. The grav-
itationally lensed images of the background star are normally too close
to be separated, but the event gives rise to a characteristic light curve.
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Figure 16.11: Light curve of a microlensing event.

For common lens masses ML ∼ 1 M� and typical Galactic velocities, the
background source increases in brightness on a timescale of ∼ 1 month be-
fore returning to its normal (i.e. unlensed) magnitude (see Figure 16.11).
A tell-tale sign is that such events are achromatic. The first microlens-
ing events in the direction of our companion galaxy, the Large Magellanic
Cloud, were reported in 1993.

16.4.2 Gravitational Lensing Basics

In deriving the basic gravitational lensing equations we make some sim-
plifying assumptions. Despite the fact that light rays are affected at some
level by all the matter between the light source and the observer (the
cosmic shear described above), we shall assume that the lensing action
is dominated by a single matter inhomogeneity at some location between
source and observer. In the ‘thin lens approximation’, all the action of light
deflection takes place at a single distance. We are justified in making this
simplification given that the path lengths involved in the halo of a galaxy
(∼ 100 kpc) and in clusters of galaxies (a few Mpc), are much smaller than
the source-lens and lens-observer distances (∼Gpc). Note also that in all
the situations considered here the gravitational field is weak, by which we
mean that the impact parameter ξ shown in Figure 16.12 is very much
greater than the Schwarzschild radius:

ξ � 2GM

c2
. (16.34)
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Figure 16.12: Geometry of strong gravita-
tional lensing. In this example, the back-
ground source S is seen as two images, S1

and S2. The distances indicated on the
left-hand side of the diagram are angu-
lar diameter distances. Light-rays from S2

have been omitted for clarity. Note that,
in the applications considered here, all the
angles in question are small so that, for
example, θ ' tan θ = ξ/DL.

16.4.2.1 The Lens Equation

With reference to Figure 16.12, in the simplest case where the lens, L, the
source S, the image S1, and the observer O are all in the same plane, the
deflection angle is:

α̃(ξ) =
4GM(ξ)

c2

1

ξ
. (16.35)

This expression can be derived from the calculation of the photon trajec-
tory in the Schwarzschild metric under the limiting conditions of the thin
lens approximation and weak gravitational field. Note that the larger the
mass contained with ξ, the larger the deflection; conversely, the larger the
impact parameter ξ, the smaller the deflection.

From Figure 16.12 it can be seen that the following relation holds:

θDS = βDS + α̃DLS (16.36)

where the distances are angular diameter distances and θ, β, α̃� 1, a con-
dition that is fulfilled in practically all astrophysically relevant situations.
With the definition of the reduced deflection angle as:

α(θ) =
DLS

DS
α̃(θ) , (16.37)
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eq. 16.36 can be expressed as:

β = θ − α(θ) (16.38)

In the more general case, when L, S, and O are not all in the same plane
(which could be the case for a non-symmetric mass distribution), we treat
the angles as vectors on the sky and we obtain the two-dimensional lens
equation:

β = θ −α(θ) (16.39)

which is the fundamental equation of gravitational lensing.

16.4.2.2 Einstein Radius

For a point lens of mass M , the deflection is given by eq. 16.35. Plugging
into 16.38 and using the small angle approximation ξ = DLθ, we obtain

β(θ) = θ − DLS

DLDS

4GM

c2θ
. (16.40)

In the case where the source is exactly behind the lens, so that β = 0, we
have:

θE =

√
4GM

c2

DLS

DLDS
. (16.41)

Note that there is no preferred direction to θE: under this special alignment
(and in the ideal case of a point mass), a ring-like image is formed (see
Figure 16.9) with the Einstein radius θE. The angular size of the ring
depends only on the mass of the lens and the redshifts of the source and
the lens.

θE defines the angular scale for a lens situation. In general, if β <∼ θE lensing
produces strong magnification; conversely when β � θE there is very little
magnification. θE can also be the boundary between gravitational lensing
producing multiple images (with separations of roughly 2θE), or only one
image.

Entering the numerical values in eq. 16.41, we have:

θE

arcsec
=

(
M

1011.09 M�

)1/2 (
DLDS/DLS

Gpc

)−1/2

. (16.42)
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Thus, galaxy-galaxy lensing gives Einstein radii of order ∼arcsec, while
galaxy clusters have θE ∼ 10s arcsec. On the other hand, for microlensing
of stars in the Galactic bulge by a solar-mass disk star approximately half
way to the Galactic centre, we can simplify with DLS/DS ≈ 1/2:

θE = 0.64× 10−3 arcsec

(
M

M�

)1/2 (
DL

10 kpc

)−1/2

, (16.43)

i.e. microlensing has a characteristic angular scale of milliarcsec (hence its
name).

16.4.2.3 Image Positions and Magnifications

Equations 16.40 and 16.41 can be combined to give the lens equation in
terms of the Einstein radius:

β = θ − θ2
E

θ
. (16.44)

Solving this quadratic equation for the image position θ, one finds:

θ1,2 =
1

2

(
β ±

√
β2 + 4θ2

E

)
, (16.45)

from which it can be seen that an isolated point source always produces
two images of a background source. The two images are on either side of
the source, with one image inside the Einstein ring and the other outside.
As the source moves away from the lens (i.e. as β increases), one of the
images approaches the lens and becomes very faint, while the other image
approaches closer and closer to the true position of the source and tends
toward a magnification of unity.

Gravitational lensing magnifies not only the sizes of distant galaxies, but
also their fluxes. The reason for this is that lensing conserves surface
brightness (flux per unit area on the sky). Then, the magnification of an
image is just the ratio between the solid angles subtended by the image
and the source, given by:

µ =
θ

β

dθ

dβ
(16.46)

In the symmetric case above, with two images being formed, differentiating
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eq. 16.44 gives:

µ1,2 =

(
1−

[
θE

θ1,2

]4
)−1

=
u2 + 2

2u
√
u2 + 4

± 1

2
, (16.47)

where u is the angular separation between lens and source in units of the
Einstein radius: u ≡ β/θE.

Note a couple of interesting aspects of the above equation. First, as β →
0 (i.e. as the source move towards being exactly behind the lens), the
magnification diverges. In the limit of geometrical optics, the Einstein
ring of a point source has infinite magnification! Second, for the image
inside the Einstein radius, θ < θE, its magnification is negative. What
this means is that the image has negative parity: it is mirror inverted. A
negative µ corresponds to a negative dθ/dβ in eq. 16.46: thus, a positive
change dβ gives a negative change in dθ, i.e. θ changes in the opposite
direction.

The sum of the absolute values of the two image magnifications is the
measurable total magnification, µ:

µ = |µ1|+ |µ2| =
u2 + 2

u
√
u2 + 4

(16.48)

Note that µ is always larger than one. The difference between the two
image magnifications is unity:

µ1 + µ2 = 1 . (16.49)

When the source lies on the Einstein radius, we have β = θE, u = 1 and
the total magnification becomes:

µ = |µ1|+ |µ2| = 1.17 + 0.17 = 1.34 (16.50)

16.4.2.4 Singular Isothermal Sphere

Lensing by a point mass is an idealised situation which obviously does not
represent real galaxies. The concept of a singular isothermal sphere (SIS) is
the next step in trying to approximate reality. In many galaxies (including
spirals with flat rotation curves) the one-dimensional velocity dispersion of
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gas and stars, σv, is only weakly dependent on distance r from the centre.
Treating such a galaxy as ‘gas’ of stars with pressure p = ρkT/m, where
ρ is the density, T the ‘temperature’ and m the typical stellar mass, we
could write mσ2 = kT ; hence the term ‘isothermal’, if we take σv to be
constant.

A spherical distribution of such stars and gas8 can be described by the
three-dimensional density distribution:

ρ(r) =
σ2

v

2πG

1

r2
(16.51)

which has a singularity at r = 0, where the density is infinite. A more
realistic model has a finite core so that near the centre the density behaves
as:

ρ =
ρc

1 +
(
r
r0

)2 , (16.52)

where r0 is the ‘core radius’. For r � r0, ρ = ρc, while for r � r0 the SIS
behaviour of eq. 16.51 is recovered.

The SIS model is often used for its simplicity. What we see on the sky is
the projection of 16.51 on a plane, which is a circularly symmetric surface
mass distribution:

Σ(ξ) =
σ2

v

2G

1

ξ
. (16.53)

The total mass enclosed within a projected distance ξ is:

M(ξ) =

ξ∫
0

Σ(ξ′) 2πξ′ dξ′ =
πσ2

v

G
ξ . (16.54)

Entering this value into eq. 16.35, one obtains the deflection angle for an
isothermal sphere:

α̃(ξ) =
4π

c2
σ2

v = 1.4′′
(

σv

220 km s−1

)2

(16.55)

which is independent of ξ and is only a function of the velocity dispersion.
(compare with eq. 16.35 for a point mass). The equivalent expression for

8Again, this is an approximation since a realistic galaxy lens usually is not perfectly symmetric but
is slightly elliptical. Depending on whether one wants an elliptical mass distribution or an elliptical
potential, various modifications of the above formalisms have been suggested.
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cored models is:

α̃(ξ) =
4π

c2
σ2

v

ξ

(ξ2
c + ξ2)1/2

, (16.56)

where ξc is the core radius.

Figure 16.13: HST image of the cluster MACS J1149.5+2223. The authors of this study
identified five different sources lensed by the cluster in as many as 15 images. The sources
are labelled 1, 2, 3, 4 and 8, with 1.1, 1.2, and 1.3 being three images of source 1 (and so
on). The source of image system 1 has a spectroscopically determined redshift z = 1.4906,
while sources 2 and 3 are at z = 1.894 and z = 2.497 respectively. Sources 4 and 8 have
photometric redshifts (deduced from their colours) of z = 3.0 and z = 2.9 respectively.
The cluster is at zcl = 0.544. The mass reconstruction places the centre of the dark matter
distribution at position A, ∼ 1.5 arcsec to the left of the brightest cluster galaxy. (Figure
reproduced from Rau et al. 2014).
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16.4.3 Conclusions

In the treatment above we have considered image formation by a gravita-
tional lens in the simplest cases. The more complex mass distributions of
rich clusters of galaxies are modelled with advanced computational tech-
niques that can use not only the positions but also the surface brightness of
multiply lensed images to reconstruct the cluster mass. The large number
of images produced by clusters such as that shown in Figure 16.13 allow
for well-constrained solutions, once the redshifts of the sources have been
determined by spectroscopy or photometry.

In general, the cluster masses deduced by modelling their gravitational
lensing effect are in good agreement with the masses found by applying
the virial theorem to the motions of the galaxies within the cluster (sec-
tion 16.3.1), or by applying the equation of hydrostatic equilibrium to the
X-ray emitting intracluster gas (section 16.3.2). All three methods arrive
at the same conclusion: the gravitational potential of galaxy clusters is
dominated by non-baryonic dark matter.

16.5 Epilogue

16.5.1 Dark Matter: What is it?

In this lecture we have answered three out of the four questions posed by
David Weinberg at the outset. The fourth one still eludes us: we have
not yet identified the particle(s) that make up non-baryonic dark matter.
There has been, and indeed continues to be, a great deal of speculation
about the nature of dark matter. The extent of our ignorance can be
gauged by the fact that the masses of candidates proposed span 76 orders
of magnitude!

One possibility is a particle that is already known: the neutrino. Although
the neutrino was once believed to be massless, there are now indications
that it may have a small mass. Neutrinos have been were shown to os-
cillate between the three known flavors (νe, νµ and ντ) that are now de-
scribed as superpositions of mass eigenstates (ν1, ν2, ν3). Experiments
using solar, atmospheric, and reactor neutrinos have measured mass dif-
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ferences between the three species to be ∆m2
32 = (2.4 ± 0.1) × 10−3 eV2

∆m2
21 = (7.5± 0.2)× 10−5 eV2; this requires that at least two mass eigen-

states have non-zero mass However, no present-day experiment has the
sensitivity to measure the absolute neutrino mass.

The most stringent limit on the sum of the neutrino masses has come
from astronomical considerations.9 Massive neutrinos would affect the way
large-scale cosmological structures form (see Lecture 14) by slowing the
gravitational collapse of halos on scales smaller than the free-streaming
length at the time the neutrinos become non-relativistic. This leads to
a suppression of the small scales in the galaxy power spectrum that we
observe today. Thus, it possible to infer an upper limit on the sum of
neutrino masses by comparing the clustering of galaxies observed in large
redshift surveys with the clustering expected for different values of mν. By
combining the large-scale matter power spectrum with Planck CMB obser-
vations,10 Riemer-Sørensen et al. (2014) derived the most stringent limit
yet on the sum of the neutrino masses,

∑
mν < 0.18 eV (95% confidence

limit).

In Lecture 7.2.1 we saw that neutrinos decouple at time t ∼ 1 s, giving rise
to a neutrino background that has been propagating through the Universe
since redshift z ∼ 1010. The number density of each neutrino species is
3/11 the number density of CMB photons, so that the total number of
neutrinos per unit volume today is:

nν,0 = 3

(
3

11

)
nγ,0 =

(
9

11

)
· 4.1× 102 cm−3 = 3.35× 102 cm−3 (16.57)

with the value of nγ,0 we deduced in eq. 7.4. The contribution of such a
neutrino background to the critical density is:

Ων,0 h
2 =

∑
mν

93.14 eV
. (16.58)

Thus, with
∑
mν < 0.18 eV and h = 0.675, we have Ων,0 < 0.004. This

upper limit is comparable to Ωstars,0, and two orders of magnitude lower
than Ωm,0. Evidently, relic neutrinos from the Big-Bang are not the main
source of non-baryonic dark matter.

9Another example of the close connection between astronomy and particle physics.
10Massive neutrinos would also have an effect on the primary CMB anisotropies discussed in Lecture 10.
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16.5.2 Cold Dark Matter

Neutrinos are an example of hot or warm (depending on their mass) dark
matter, as they travel at near relativistic speeds. An alternative class of
candidates is Cold Dark Matter, a term meant to indicate particles that
decoupled when they were already non-relativistic. Cold dark matter is be-
ing given a great deal of attention because its inclusion in hydrodynamic
simulations of the growth of structure gives a good match to the observed
large-scale distribution of galaxies and voids. Indeed, ΛCDM is the stan-
dard paradigm of 21st century cosmology: a Universe whose expansion
is now driven by a cosmological constant and in which the energy den-
sity of cold dark matter is dominant over other forms of matter, including
baryons.

WIMPs (Weak Interacting Massive Particles) are an example of cold dark
matter: particles with mass mc2 > 10 GeV (particles of smaller mass would
have been detected in particle accelerator experiments) that interact with
other particles only through gravity and the weak nuclear force, and are
thus intrinsically difficult to detect. Extensions of the standard model of
particle physics known as supersymmetry (SUSY) entertain the existence
of a large number of new particles, the lightest of which would be stable.
None have yet been found in collider experiments, such as the Large Hadron
Collider at the European Organization for Nuclear Research (CERN). It
must also be said that the supersymmetric WIMP scenario is very uneco-
nomical since it duplicates the standard model with its large number of
particles, when actually only one new particle would be needed for dark
matter. In any case, the search continues for a WIMP that may fit the
astronomical requirements for non-baryonic dark matter.

16.5.3 Modified Physics?

For completeness, we also mention an alternative view to non-baryonic
dark matter, held by a minority of astronomers. Rather than appeal to
an exotic and hypothetical form of matter whose existence is beyond the
standard model of particle physics, some astronomers have proposed that
the inflated mass-to-light ratios are an indication that the law of gravity is
modified on very large scales. This class of models comes under the general
label of modified Newtonian dynamics (MOND), first proposed in 1983 by
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M. Milgrom.

MOND starts from the premise that Newton’s second law, F = ma may
not be applicable in the regime of weak acceleration, where it should be
replaced by F = ma2/a0, with a0 ' 1 × 10−8 cm s−2, comparable to the
acceleration of the Sun around the Galactic centre. When a � a0, the
modified force law leads to flat rotation curves. MOND was developed
specifically to explain the flat rotation curves of spiral galaxies, but has
subsequently been extended to larger scales. Until a dark matter parti-
cle is identified, it will remain a plausible alternative according to some
astronomers.
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