
M. Pettini: Introduction to Cosmology — Lecture 15

CLUSTERS OF GALAXIES:
SPHERICAL COLLAPSE AND VIRIALIZATION

Figure 15.1: Hubble Space Telescope image of the galaxy cluster Abell 2218 at a redshift
z = 0.18. The cluster acts as a powerful lens, magnifying all galaxies lying behind the
cluster core. The lensed galaxies are all stretched along the cluster’s center and some of
them are multiply imaged. Those multiply imaged usually appear as a pair of images with
a third—generally fainter—counter image. The color of the lensed galaxies is a function
of their distances and types. The orange arc is an elliptical galaxy at moderate redshift
(z = 0.7). The blue arcs are star-forming galaxies at intermediate redshift (z = 1− 2.5).
A pair of faint red images near the bottom of the picture is a star-forming galaxy at
redshift z ∼ 7 recently discovered by a team of astronomers from Caltech, the University
of Cambridge and the Observatoire Midi-Pyrenees in France. The lensed galaxies are
particularly numerous, as we are looking in between two mass clumps, in a saddle region
where the magnification is large.
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15.1 Clusters of Galaxies

Clusters of galaxies are among the largest—and most spectacular—structures
in the universe, marking the sites of the greatest overdensities of matter. In
nearby clusters one can discern 100s to 1000s of bright (L ≥ L∗) galaxies—
mostly ellipticals— concentrated within volumes comparable to that of the
Local Group of galaxies, with radii r ∼ 1 Mpc.

Most clusters are the source of intense X-ray emission, with typical tem-
peratures of 2 − 10 keV. Such high temperatures are indicative of gas in
hydrostatic equilibrium within a deep gravitational potential well. The
deep concentration of matter makes clusters act as gravitational lenses,
magnifying and distorting the images of background galaxies; ‘gravity’s
telescopes’ provide a tool which is much exploited in searches for the high-
est redshift galaxies.

In the local universe, clusters of galaxies are gravitationally bound, viri-
alised systems. The three-dimensional velocity dispersion of the galaxies
within the cluster, typically σ3D ' 1500 km s−1, is one order of magnitude
greater than the Hubble expansion over the Mpc-scale of the cluster. The
relevant timescale for virialization is the dynamical timescale tdyn—you can
think of this as the time it takes for the cluster to communicate with itself
through its own potential. We can obtain an estimate of tdyn from the
cluster crossing time tcr ∝ r/σ3D:

tdyn ≈
r

σ3D
= 1× 109

(
r

Mpc

) (
1000 km s−1

σ3D

)
years

which is approximately 1/10 of the Hubble time. Virial equilibrium cannot
be established on timescales shorter than tdyn.

15.2 Evolution of a Density Perturbation: Linear The-

ory

In this lecture we follow the evolution of a density perturbation, from early
times through to gravitational collapse and virialization. For convenience
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we will develop our formalism for the simplest case of a flat, matter dom-
inated, universe. Consider the idealised case of a spherical volume where
the density is infinitesimally higher than the cosmic mean; in Fig. 15.2 this
has been achieved by ‘emptying out’ a thin shell surrounding our spherical
region and placing the material which was inside this shell within the re-
gion of radius r. Thus, the density inside the volume of radius r is ρcrit+δρ,
while the density of the background universe remains ρcrit.

ρcrit

ρ>ρ
crit

Figure 15.2: Sketch of a spherical over-density, with decoupled evolution from the back-
ground universe

Our density perturbation will then evolve like a closed universe with Ωm =
1 + δ. As we saw in lecture 4 (Figure 4.2), the scale factor a(t) of such
a universe reaches a maximum value amax and then decreases again—in
other words, our perturbation will grow to a maximum size r = rmax at
time t = tmax and then collapse in a finite time.

It is convenient to express the evolution of the scale factor in terms of
the ‘development angle’ θ, because the radius r and time t have simple
functional forms in terms of θ . It can be shown that the Friedmann
equation for a closed universe:

1

a

da

dt
= H0

(
Ωm,0a

−3 + (1− Ωm,0)a
−2
)1/2

(15.1)

has a parametric solution in terms of the development angle:

θ = H0 η (Ωm,0 − 1)1/2 (15.2)
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whereby:
r(θ) = A(1− cos θ) (15.3)

and
t(θ) = B(θ − sin θ) (15.4)

with:

A = r0
Ωm,0

2(Ωm,0 − 1)
; B =

1

H0

Ωm,0

2(Ωm,0 − 1)3/2
. (15.5)

The development angle θ is a scaled form of the ‘conformal time’ η(t), also
called the “arc-parameter measure of time”. During the interval of time dt,
a photon travelling on a hypersphere of radius a(t) covers an arc measured
in radians equal to

dη =
dt

a(t)
.

The ‘arc parameter” is defined by the integral of dη from the start of the
expansion:

η =

∫ t

0

dt

a(t)
.

Thus, small values of the “arc parameter time”, η, mean early times and
larger values mean later times.1

We can find the maximum size which the perturbation will grow by con-
sidering (eq. 15.3):

dr

dθ
= A sin θ = 0 (15.6)

which is satisfied at θ = 0, π, 2π . The solution θ = 0 corresponds to
time t = 0, but θ = π corresponds to the time of turn-around, when
the overdensity reaches its maximum size before collapsing. At this time,
t = tmax, we have

rmax = 2A = r0
Ωm,0

Ωm,0 − 1
(15.7)

and, more generally,
r

rmax
=

1

2
(1− cos θ) . (15.8)

1When the model universe is not closed, the same parameter can be defined—only the words ‘hyper-
sphere’ and ‘arc’ have to be replaced by the corresponding words for a flat hypersurface of homogeneity
(k = 0), or a hyperboloidal hypersurface (k = −1).
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From eq. (15.4), we have:

tmax = t(π) = πB; H0tmax =
π

2

Ωm,0

(Ωm,0 − 1)3/2
(15.9)

and
t

tmax
=

1

π
(θ − sin θ) . (15.10)

The solution θ = 2π corresponds to the time when the structure has com-
pletely recollapsed (but see later), when

r → 0 and t = 2πB (θ = 2π) . (15.11)

The constants A and B are related through the enclosed mass:

M =
4π

3
r3

0Ωm,0ρcrit =
4π

3
r3

0Ωm,0
3H2

0

8πG
(15.12)

by the simple relation:
A3 = GMB2 . (15.13)

In the linear regime, we can follow the growth of the perturbation by using
the Maclaurin expansions for cos θ and sin θ in (15.3) and (15.4):

lim
θ→0

r(θ) = A

(
1

2
θ2 − 1

24
θ4

)
(15.14)

and

lim
θ→0

t(θ) = B

(
1

6
θ3 − 1

120
θ5

)
. (15.15)

The leading order, r = Aθ2/2 and t = Bθ3/6, just gives the expansion of
the background (i.e. outside the volume including the overdensity) universe
where:

r = a =
A

2

(
6t

B

)2/3

(15.16)

that is a ∝ t2/3 (matter-dominated universe).

Our overdensity will grow according to the equations:

r

rmax
' θ2

4
− θ4

48
,

t

tmax
' 1

π

(
θ3

6
− θ5

120

)
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which can be combined to give the linearised scale factor of our closed
universe:

alin

amax
' 1

4

(
6π

t

tmax

)2/3
[

1− 1

20

(
6π

t

tmax

)2/3
]
. (15.17)

Again, the first term is just the expansion of the background in a flat
matter dominated universe. Including both terms in the square brackets
gives the linear theory expression for the growth of a perturbation.

In both cases (inside and outside the volume containing the overdensity),
we are dealing with matter dominated universes where the mass-energy
density varies as a−3. Hence, throughout the evolution (expansion, turn-
around, and collapse) of the perturbation, the relationship:

1 + δlin =

(
aback

alin

)3

(15.18)

remains valid. Substituting (15.18) into eq. (15.17) where aback is given by
the leading order term, and with the substitution (1+δ)−1/3 ' 1− 1

3δ valid
for δ � 1, we have:

δlin =
3

20

(
6π

t

tmax

)2/3

(15.19)

so that at turnaround (t = tmax) we have:

δturn
lin =

3

20
(6π)2/3 = 1.06 .

Of course, turnaround also represents the breakdown of linear theory, in
that it represents the time when our volume containing the perturbation
breaks away from the background expansion (but has not yet collapsed
to form a gravitationally bound structure). The actual nonlinear density
contrast at turnaround is

1 + δturn
nonlin =

(
aback

amax

)3

=

[
1

4

(
6π

t

tmax

)2/3
]3

=
(6π)2

43
= 5.55 (15.20)
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obtained by considering just the leading order term of eq. (15.17).

After turnaround, the evolution of the overdensity mirrors the expansion
phase (see Figure 4.2) until the object collapses at t = 2tmax. At this time
the linear density contrast has become

δcoll
lin = δc =

3

20
(12π)2/3 = 1.686 . (15.21)

Thus, a linear density contrast δc ' 1.7 corresponds to the epoch of com-
plete gravitational collapse of a spherically symmetric perturbation. This
value of δc ' 1.7 is used in analytical treatments of the growth of structure
in the universe, such as the Press-Schechter formalism (Press & Schechter
1974, ApJ, 187, 425 — this is one of the most influential papers in the field
of structure formation, with over 1300 citations).
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Figure 15.3: The evolution of the background scale factor, the linear scale factor and the
non-linear, collapsing scale factor.
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15.3 Virialization

A real density perturbation is neither spherical nor homogeneous. Thus,
the collapse does not proceed to a point of infinite density, but reaches
virial equilibrium at a radius rvir = 1/2rmax.2 This condition is achieved
when θ = 2π. By this time, the density within our volume has increased
by a factor of 23, while that of the background universe has decreased by
a factor of 22, since ρ ∝ a−3 and a ∝ t2/3 in a matter-dominated universe.
Thus, at virialization, the overdensity within our volume has grown from
1 + δturn

nonlin = 5.55 (eq. 15.20) to 5.55× 8× 4, or

1 + δvir
nonlin ' 178 (15.22)

a value which is confirmed by simulations.

So far we have considered the simplest case of a universe with Ωm,0 = 1. In
the more general case of a low density universe, the linear density contrast
at collapse, δcoll

lin , is still close to the value δc ' 1.7 (eq. 15.22), but the
true density contrast at virialization is increased to 1 + δvir

nonlin = 178 Ω−0.6
m,0 ,

or about a factor of two for Ωm,0 = 0.3 (see Figure 15.4). The threshold
δvir

nonlin ' 200 is often used to define a collapsed object. The ‘virial’ radius is
the radius around a structure (a galaxy, a cluster) within which the density
is ' 200 times higher than the average background density.

In terms of the initial comoving radius, ri,com, we have:

r3
max =

1

5.55

1

(1 + zmax)3
r3

i,com (15.23)

and

r3
vir =

1

178

1

(1 + zvir)3
r3

i,com . (15.24)

The virial theorem for bound objects tells us that:

v2 =
GM

rg
(15.25)

2This can be appreciated by considering the virial theorem Uvir = −2Tvir, where as usual the symbols
U and T represent the potential and kinetic energies respectively. At turnaround, the kinetic energy
of the collapsing sphere is zero. From conservation of energy, we have: Urmax

= Uvir + Tvir. Thus,
Urmax = Uvir − 1

2Uvir = 1
2Uvir. Since the gravitational energy of a mass M within a spherical volume of

radius R is U ∝ 1/R, it follows that Rturn = 2Rvir .
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Figure 15.4: (Reproduced from Eke et al. 1996, MNRAS, 282, 263). Upper panel: critical
threshold for collapse, δc, as a function of Ωm,0 in the spherical collapse model. Lower
panel: the virial density of collapsed objects in units of the critical density. Since we have
defined δ ≡ (ρm − 〈ρm〉)/〈ρm〉, ∆c = δvirnonlin Ωm,0.

where M is the mass of the system and rg is the radius within which
the gravitational energy is U = −GM 2/rg. The mass within an initial
comoving radius ri,com is:

M =
4π

3
ρm,0 r

3
i,com . (15.26)

Combining the above equations, we find that the velocity dispersion and
the mass of a collapsed object are related by:( v

127 km s−1

)2

=

(
M

1012 h−1M�

)2/3

(1 + zvir) . (15.27)

Note the factor (1 + zvir) involved in the scaling of v2 with M 2/3. This
means that perturbations which collapse at earlier times have higher ve-
locity dispersions for the same enclosed mass. The epoch when an initial
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density perturbation collapses is related to its overdensity via eqs. (15.11)
and (15.2), that is:

θ = H0 η (Ωm,0 − 1)1/2 = 2π . (15.28)

Thus higher overdensities turn around and collapse at the earlier times,
when the background universe was smaller and denser, and when virialised
have proportionally higher velocity dispersions (15.27) and are more com-
pact (15.25) than larger regions of lower overdensity enclosing the same
mass.

The scaling of eq. (15.27) has been confirmed by simulations, although the
normalisation turns out to be somewhat different from that obtained with
the simple analytical analysis we have considered here.

Finally, if the matter within the volume is in hydrostatic equilibrium, we
can associate a temperature to the velocity dispersion, T ∝ v2, and hence
obtain the scaling:

kT

7 keV
=

(
M

1015h−1M�

)2/3

(1 + zvir) . (15.29)

Gas at such high temperatures gives rise to X-ray emission through thermal
bremsstrahlung radiation (see Figure 15.5).

Figure 15.5: Left: the Hydra cluster of galaxies in optical light. The cluster consists of
several hundred galaxies at a mean redshift z = 0.054. Right: the same region observed
at X-ray wavelengths with the Chandra satellite. Hot gas at T ' 4 × 107 K extends
throughout the cluster, indicative of the deep gravitational potential within which galaxies
and intracluster gas move.
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