
M. Pettini: Introduction to Cosmology — Lecture 14

LARGE SCALE STRUCTURE

14.1 Overview

The Universe around us is isotropic only on very large scales, of order 100s
of Mpc. On smaller scales—from galaxies which have a density ∼ 105−106

times higher than the mean, to superclusters of galaxies and voids—the
universe exhibits a great deal of structure (see Fig. 14.1).

Figure 14.1: One of the earliest pictures of the large scale structure in the galaxy dis-
tribution is the slice made from the Center for Astrophysics redshift survey of galaxies
brighter than B ' 15.5 and with velocities v < 12 000 km s−1 (z ≤ 0.04). The plane of
our own Galaxy runs across the sky from right ascension 6h to 19h. This band is devoid of
galaxies in the plot because the Milky Way gets in the way. Note the large scale features
like the ‘Great Wall’ between 8h and 16h, and the empty ‘voids’ .
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The existence of these cosmological structures tells us something impor-
tant about the initial conditions of the Big Bang, and about the physical
processes which have operated subsequently. In general, structure will de-
velop differently in different cosmological models; an example is shown in
Fig. 14.2. Thus, from a statistical description of the large scale structure
of the Universe we can deduce the best-fitting values of some cosmological
parameters (primarily Ωm,0, Ωb,0, H0, and the primordial spectral index n
(to be defined later).

Nowadays, sophisticated hydrodynamical simulations performed on some
of the most powerful computers available to astronomers allow the growth
of cosmic structure to be followed from high redshift to the present time.
By varying the initial conditions and following the subsequent evolution
in the distribution of galaxies and dark matter, it is possible to determine
the set of cosmological parameters (and baryon physics) that best fit the
real Universe. Some examples can be found here:
http://www.mpa-garching.mpg.de/galform/data vis/.

Figure 14.2: A pictorial example of how the large scale structure in the distribution of
galaxies can be used to discriminate between different model universes. Just from visual
inspection, three of the four models can be ruled out.
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14.1.1 Primordial Fluctuations

The working hypothesis is that tiny perturbations were present at early
times and that these primordial density fluctuations subsequently grew
through self-gravity and other effects, and developed into the structures
we see today. Two candidates for what might have initially seeded the
structure are:

1. Amplification of quantum zero-point fluctuations during an inflation-
ary era (Heisenberg’s uncertainty principle guarantees that, because
the positions of particles are indeterminate, there must have been
density inhomogeneities in the early universe).

2. Topological defects formed in a cosmological phase transition.

Consider an initial density perturbation defined by the dimensionless pa-
rameter:

1 + δ(x) ≡ ρ(x)/〈ρ〉 (14.1)

where, as usual, we use the symbol ρ to indicate the density. With the
density content divided into nonrelativistic matter and radiation, there are
two distinct perturbation modes, with different relations between the two
density components.

Imagine starting with a uniform distribution of matter and radiation; the
simplest way to perturb the density would be to compress (or expand)
a region within the volume adiabatically. This would change the matter
density and the photon number density by the same factor. But the energy
density of matter and radiation respond differently to a change in scale
factor a—or equivalently temperature T [recall that for pressureless matter
ρm ∝ 1/a3 (eq. 2.18), while for radiation ρrad ∝ 1/a4 (eq. 2.23)]. Thus,
adiabatic perturbations would change the energy density of matter and
radiation differently: δrad = 4δm/3.

The second mode perturbs the entropy density but not the energy density.
The resulting fluctuations are termed isocurvature perturbations—
since the total energy density remains homogeneous, there is no pertur-
bation to the spatial curvature and ρradδrad = −ρmδm. You could think,
for example, of variations in the relative fraction of baryons to photons.
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At very early times, when the universe is strongly dominated by radia-
tion, isocurvature initial conditions effectively correspond to a vanishingly
small fractional perturbation in the radiation density, with only the matter
density varying significantly.

Now, let’s imagine that we wanted to create a non-uniform density field at
some given time in the history of the universe. Isocurvature perturbations
would be more natural on causality arguments (it would be impossible to
change the mean density on scales larger than the horizon at that time).
This is indeed the case in models involving a late-time cosmological phase
transition—such as the topological defect models mentioned earlier.

However, inflation changes the nature of the particle horizon at early times.
Thus, in inflationary models, fluctuations in total density can be produced
on scales which vastly exceed c/H0. If these curvature fluctuations are
generated prior to the processes responsible for the baryon asymmetry of
the Universe, then adiabatic modes will be the norm.

14.1.2 The Transfer Function

Any primordial density perturbations will subsequently be modified by a
variety of physical processes: growth under self-gravitation, the effect of
pressure, and dissipative processes. This evolution works in the sense that
modes of short wavelength have their amplitudes reduced relative to those
of long wavelength. The overall effect is encapsulated in the transfer
function

Tk ≡
δk(z = 0)

δk(z)D(z)

where D(z) is the linear growth factor between redshift z and the present.
The form of the transfer function depends on the type of fluctuation (adia-
batic or isocurvature) and on the matter content of the universe: models in
which the contribution to Ωm is from baryons, cold dark matter, hot dark
matter, or a mixture of any of these, all have different transfer functions.

Linear (by which we mean |∆ρ|/〈ρ〉 � 1) adiabatic perturbations grow
with time as follows:
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δ ∝
{
a2 in the radiation dominated era
a in the matter dominated era

(14.2)

We can see this most easily in a flat (k = 0) FRW model, where:

H2 =
8πG

3
ρ (14.3)

with ρ = ρtot = ρcrit. A spherical region of enhanced density ρ′ > ρ within
this flat universe will also expand with the same Hubble law if its size ex-
ceeds the particle horizon and its particles are therefore not causally con-
nected. Because the dynamics of the spherical density fluctuation depend
only on the mass contained within (recall Birkhoff’s theorem), it evolves
as a separate entity, like a miniature closed universe, according to:

H2 =
8πG

3
ρ′ − kc2

a2
, (14.4)

with k > 0. Subtracting one equation from the other, we find

δ ≡ ρ′ − ρ
ρ

=
3

8πG

kc2

a2

1

ρ
(14.5)

The evolution of δ is hence related to the evolution of the curvature kc2/a2

relative to the density ρ. In a matter dominated universe ρ ∝ a−3 and in
a radiation dominated universe ρ ∝ a−4 and hence

δ ∝ a−2

ρ
∝
{
a2 in the radiation dominated era
a in the matter dominated era

(14.2)

Recalling that a ∝ t1/2 in a radiation dominated universe, and a ∝ t2/3 in
a matter dominated universe, we deduce

δ = δi ·
{
t/ti in the radiation dominated era

(t/ti)
2/3 in the matter dominated era

(14.6)

The amplitude of our super-horizon adiabatic fluctuation therefore in-
creased linearly with time during the radiation era and only a little more
slowly during the matter-dominated era. Note that the increase in δρ/ρ
did not involve the separation of the high-density region from the Hubble
flow, but is just due to the difference in the rates at which the density
decreased inside and outside the fluctuation as the universe expanded.
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Isocurvature perturbations to the matter, on the other hand, evolve as:

δm ∝
{

constant in the radiation dominated era
a−1 in the matter dominated era

(14.7)

In the adiabatic case, gravity causes the mode amplitude to increase; in the
isocurvature case the evolution acts to preserve the initial uniform density.
Thus, isocurvature perturbations act as a ‘deep freeze’ preserving potential
density fluctuations and protecting them from the dissipation processes
suffered by the adiabatic fluctuations (which we shall discuss presently). In
both cases, the shape of the primordial perturbation spectrum is preserved,
and only its amplitude changes with time.

On small scales, however, a variety of physical processes affect the way
perturbations grow:

1. Pressure opposes gravity effectively for wavelengths below the Jeans
length:

λJ = cs

√
π

Gρ

On scales smaller than the Jeans length, where pressure forces dominate
over gravitational forces, the fluctuations move as sound waves in the fluid,
damped by its viscosity and transporting energy from one region of space
to another. In the radiation era, cs = c/

√
3 and so the Jeans length is

always close to the size of the horizon. It reaches a maximum value at
the matter-radiation equality, when the sound speed begins to drop. This
defines an important scale, the comoving horizon size at zeq:

rH(zeq) ' 16

Ωm,0h2
Mpc

Beyond this scale, perturbations should be affected by gravity only and we
would then expect to see a bend in the spectrum of perturbations where
pressure starts to become important. Notice that this scale depends on
Ωm,0; so here is an example of how the galaxy distribution can be used to
determine cosmological parameters.

The Jeans analysis assumes a tightly coupled baryon-photon plasma. There
are two situations where this is inappropriate.
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2. Photon Diffusion. At early times the plasma is very optically thick,
but as the universe expands the mean free path for photons increases and
the photons tend to leak out of the sound waves and then damp out,
smoothing the inhomogeneities in the photon-baryon fluid. This is the
Silk damping we already discussed in Lecture 10.4.2. At the epoch of last
scattering, fluctuations on scales smaller than the distance travelled by the
photon random walk:

λs = 2.7 (Ωm,0Ω
2
b,0h

6)−1/4 Mpc

have been damped out. Nowadays the Silk damping of acoustic fluctuations
is not thought to be so critical: the major contributor to Ωm is dark matter,
and the baryons can fall into the dark matter potential wells after last
scattering.

3. Free Streaming. At early times, dark matter particles will undergo
free streaming at the speed of light, and so erase all scales up to the horizon,
a process which only stops when the particles go non-relativistic. For
massive neutrinos this happens at zeq (because the number densities of
photons and neutrinos are comparable).

Figure 14.3: (Reproduced from J. Peacock’s Physical Cosmology) A plot of transfer func-
tions for various models. For adiabatic models, Tk → 1 at small k, whereas the opposite is
true for isocurvature models. A number of possible matter contents are illustrated: pure
baryons,; pure C(old)DM; pure H(ot)DM; M(ixed)DM (30% HDM, 70% CDM).

7



14.2 Measures of Large Scale Structure

Since the pioneering work by John Huchra and colleagues at the CfA in
the 1980s, galaxy surveys have proliferated and have reached further and
further into the distant Universe (see Figure 14.4). Hundreds of galaxy
redshifts can now be measured simultaneously thanks to technological ad-
vances in the size of astronomical detectors and in efficient, multiplexing
spectrographs.

One of the aims of all of these large surveys is to analyse the large scale
distribution of galaxies and thereby determine both the form of the initial
spectrum of fluctuations, and the transfer function—with its encoded cos-
mological parameters—which has turned them into the structures we see
today.

In order to interpret the results of these extensive galaxy surveys, we need
a mathematical description of the statistical properties of the distribu-
tion of galaxies. The analogy with waves on the surface of a lake may

Figure 14.4: Illustration of the depth and sky coverage of some of the most extensive
recent galaxy surveys. The integers on the positive x-axis indicate the look-back time in
Gyr. The DEEP2, zCOSMOS and GAMA surveys extend to well beyond z = 0.6, more
than ∼ 20 times further than the pioneering CfA surveys of the 1980s.
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be helpful here. Their statistical properties, such as the distributions of
wavelengths and amplitudes, depend on the shape and depth of the lake
and the strength and direction of the wind blowing over the surface. If we
assume that the wind is constant with time, then the statistical properties
of the surface of the lake would not change. This doesn’t of course mean
that two snapshots of the lake taken at different times would look identical,
but rather that they are statistically indistinguishable—there is no way of
deciding which of the two snapshot was taken first.

The most common mathematical tool used to describe the statistical prop-
erties of the large scale distribution of matter is Fourier analysis.

14.2.1 Fourier transforms of the density field

We start with our dimensionless density perturbation field:

δ(x) ≡ ρ(x)− 〈ρ〉
〈ρ〉

(14.8)

which we can think of as the superposition of many modes. In a flat
comoving geometry, a field such as this is most conveniently described with
Fourier analysis.1 But how do we make a Fourier expansion of the density
field in an infinite universe? Imagine that the field is periodic within a box
of side L; then we would just have a sum over the wave modes:

F (x) =
∑

Fke
−ik·x

The requirement of periodicity restricts the allowed wavenumbers to har-
monic boundary conditions

kx = n
2π

L
, n = 1, 2, . . .

and similarly for ky and kz. If we now let the box become arbitrarily large,
then the sum will become an integral that incorporates the density of states
in k-space. The Fourier relations in n dimensions are thus

F (x) =

(
L

2π

)n ∫
Fk(k) e−ik·x dnk

1In other geometries, the correct approach is to consider the eigenfunctions of the wave equation in
curved space. Normally this complication is neglected because even in an open universe, the difference
becomes significant only on scales of the order of the present-day horizon.
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Fk(k) =

(
1

L

)n ∫
F (x) eik·x dnx

In particular, in three dimensions the forward and inverse Fourier trans-
forms then are:

F (x) = V

∫
d3k

(2π)3
F (k) e−ik·x (14.9)

and

F (k) =
1

V

∫
d3xF (x) eik·x (14.10)

where V is the volume.

14.2.2 The galaxy (auto)correlation function

A commonly used measure of clustering is the second moment of the density
field:

ξ(r) ≡ 〈δ(x) · δ(x + r)〉 (14.11)

which is called the autocorrelation function of the density field—usually
referred to simply as the correlation function. The angular brackets indi-
cate an averaging over the normalization volume V . Before deriving the
Fourier formulation of ξ(r), let us consider briefly its meaning. If galaxies
were distributed uniformly through space, with number density n, then the

Figure 14.5: Density correlation measurement
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probability dP of finding a galaxy within a volume dV would be the same
everywhere, dP = n dV .2 However, in reality galaxies are clustered, so
that the probability of finding a galaxy within a volume dV at a distance
r from a specified galaxy becomes:

dP = n[1 + ξ(r)]dV (14.12)

where n is the average number density of galaxies and ξ(r) is the two-point
(or galaxy-galaxy) correlation function which describes whether galaxies
are more concentrated (ξ > 0) or more dispersed (ξ < 0) than average (see
Fig. 14.5). Note that with the definition of (14.11), ξ(r) measures equally
well the clustering of voids (underdense regions where δ(x) < 0).

In Fourier space, we can express ξ as the sum:

ξ =

〈∑
k

∑
k′

δkδ
∗
k′ ei(k

′−k)·x e−ik·r

〉
(14.13)

where we have used the relation between modes with opposite wavevectors
that holds for any real field: δk(−k) = δ∗k(k) (where δ∗ is the complex
conjugate of δ). Now, by the periodic boundary conditions, all the cross
terms with k′ 6= k average to zero; thus, the double sum in (14.13) reduces
to the integral:

ξ(r) =
V

(2π)3

∫
|δk|2 e−ik·r d3k (14.14)

In short, the correlation function is the Fourier transform of the power
spectrum (cfr. eq. 14.9) for which the alternative notation:

P (k) ≡ 〈|δk|2〉 (14.15)

is often used. Since in an isotropic universe the density perturbation spec-
trum contains no preferred direction, we have the isotropic power spectrum:
〈|δk|2(k)〉 = |δk|2(k). The angular part of the k-space integral in (14.14)
can therefore be performed immediately. We introduce spherical polar co-
ordinates with the polar axis along k, and use the fact that ξ is real—so

2We assume that dV is sufficiently small that dP ≤ 1.
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that e−ik·r → cos(kr cos θ). This yields:

ξ(r) =
V

(2π)3

∫
dk k2

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)P (k) cos(kr cos θ) (14.16)

from which we obtain

ξ(r) =
V

(2π)3

∫
P (k)

sin kr

kr
4πk2dk (14.17)

It is sometimes convenient to express the power spectrum in dimensionless
form, as the variance per logarithmic interval in k :∆2(k) = d〈δ2〉/d ln k ∝
k3 P (k) [to see this, just consider

∫
k2dk =

∫
k3

k dk =
∫
k3d ln k].

So, we define:

∆2(k) ≡ V

(2π)3
4πk3P (k) (14.18)

Recalling eq. 14.10, we have:

∆2(k) =
V

(2π)3
4πk3 × 1

V

∫
d3r ξ(r) eik·r

∆2(k) =
V

(2π)3
4πk3 × 4π

V

∫
ξ(r)

sin kr

kr
r2dr

(see eq. 14.16), from which we then obtain:

∆2(k) =
2

π
k3

∫ ∞
0

ξ(r)
sin kr

kr
r2 dr (14.19)

This formulation gives a more intuitive meaning to the power spectrum
than P (k), which is a functional representation of the power per unit vol-
ume in k-space. For example, ∆2(k) = 1 means that there are order-unity
density fluctuations from modes in the logarithmic bin around wavenum-
ber k. Thus ∆2(k) is the natural choice for a Fourier-space counterpart to
the dimensionless quantity ξ(r).

14.3 The Spectrum of Fluctuations

Clearly, the power spectrum of density fluctuations is a fundamental quan-
tity in cosmology, but what do we know about its functional form? The
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simplest assumption is that the spectrum does not contain any preferred
length scale—we do not know of a physical theory which would explain
such a feature. Inflationary models quite naturally predict a scale-free
spectrum of primordial fluctuations of the form:

〈|δk|2〉 ∝ kn (14.20)

where the spectral index n governs the balance between large- and small-
scale power. The meaning of different values of n can be appreciated by
imagining the results of filtering the density field by passing over it a box
of some characteristic moving size x and averaging the density over the
box. This will filter out waves with k > 1/x, leaving a variance:

〈δ2〉 ∝
∫ 1/x

0

kn4πk2 dk ∝ x−(n+3) (14.21)

In terms of the mass M ∝ x3 we then have

δrms =
√
〈δ2〉 ∝M−(n+3)/6 (14.22)

Similarly, as we show below, a power-law spectrum implies a power-law
correlation function:

ξ(r) =

(
r

r0

)−γ
(14.23)

with γ = n + 3. Notice (from eq. 14.12) that r0 is the distance from a
galaxy at which the probability of finding another galaxy is twice what
it would be if galaxies were distributed evenly on the sky. Thus, r0 is a
convenient measure of the clustering length scale.

To see that a power-law spectrum implies a power-law correlation function,
recall eq. 14.19:

∆2(k) =
2

π
k3

∫ ∞
0

ξ(r)
sin kr

kr
r2 dr

Now substitute ξ(r) = (r/r0)
−γ

∆2(k) =
2k2rγ0
π

∫
r1−γ sin kr dr
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Looking up the solution to the integral we find:

∆2(k) =
2

π
(kr0)

γ Γ(2− γ) sin
(2− γ)π

2
= β(kr0)

γ (14.24)

valid for γ < 3 (n < 0).

Let’s look at the possible range of values of n. Clearly, our assumption that
the Universe be homogeneous on large scales, requires n > −3, so that the
variance 〈δ2〉 decreases as x increases in eq. 14.21 (or, alternatively, we
require ξ(r) → 0 at very large r; hence γ > 0 in eq. 14.23). The value
n = 0 means the same power on all scales, or what is sometimes referred
to as white noise. You would obtain such a power spectrum if you threw
down a large number of point masses at random. This is also known as the
Poissonian power spectrum because it corresponds to fluctuations between
different cells that scale as 1/

√
Mcell.

The measured galaxy correlation function (see Fig. 14.6) is consistent with
a power law of the form:

ξg(r) '
(

r

5h−1 Mpc

)−1.8

(14.25)

which corresponds to n ' −1.2, although r0 (but not γ) also depends on
galaxy type: red (elliptical) galaxies tend to be more clustered than blue
(spiral) galaxies, perhaps because they formed earlier, or because ellipticals
are formed by mergers (which are more frequent when galaxies are heavily
clustered).

Most important of all is the scale-invariant spectrum (also known as
the Zeldovich, or Harrison-Zeldovich spectrum) which corresponds to n =
1. A spectral index of 1 has important consequences. If we consider a
perturbation δΦ in the gravitational potential, from the Poisson equation:

∇2δΦ = 4πGρ0δ ;

in Fourier space we have:

δΦk = −4πGρ0δk/k
2

that is:

δΦk ∝
δk
k2
∝ k−3/2 .
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Figure 14.6: Left: The galaxy two-point correlation function (ξ(r) in our notation) mea-
sured from the near-completed two-degree Field (2dF) galaxy redshift survey is com-
pared with earlier measurements from the Las Campanas Redshift Survey (LCRS) and
the first data from the Sloan Digital Sky Survey (SDSS). (Figure reproduced from
http://www.roe.ac.uk/∼jap/2df). Right: The correlation function of Luminous Red
Galaxies (LRGs) on large scales (60h−1 Mpc < s < 400h−1 Mpc, where the 2dF sam-
pling in the left panel is poor) determined from the third and seventh SDSS data releases
(DR3 and DR7; figure reproduced from Kazin et al. 2010).

Since ∆2(k) ∝ k3δ2
k (eq. 14.18), for n = 1 we have ∆2(k) ∝ k4 and

∆2
Φ ∝ δΦ2

kk
3 = constant

Since potential perturbations govern the flatness of spacetime, a scale-
invariant spectrum corresponds to a metric that is fractal: spacetime has
the same degree of ‘wrinkles’ on each resolution scale. A scale-invariant
spectrum with n = 1 (approximately) is one of the predictions of inflation-
ary theories and appears to be confirmed by observations of P (k) on the
largest scales as measured by the temperature anisotropies of the CMB.

14.4 Filtering and Moments

A common concept in the manipulation of cosmological density fields is
that of filtering, which is just the convolution of the density field with some
window function: δ → δ ∗ f or in Fourier space δk → δk fk. The filtered
power spectrum is P (k) |fk|2. Many observable results can be expressed in
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this form. Two common 3D filter functions are: (i) a Gaussian, which in
real space is:

f(r) =
V

(2π)3/2R3
G

e
− r2

2R2
G

and in Fourier space becomes:

fk = e−
k2R2

G
2

and (ii) a spherical top-hat window function which in real space is

f(r) =
3V

4πR3
T

(r < RT)

and in Fourier space becomes

fk(kRT) =
3

(kRT)3
[sin(kRT)− (kRT) cos(kRT)] =

3j1(kRT)

kRT
,

where j1 is the spherical Bessel function.

We are often interested not in the convolved field in itself, but in its variance
for use as a convenient statistic—an example might be the rms fluctuations
in the number of objects in a cell. By the convolution theorem, this means
that we are interested in the second moment of the power spectrum times
the squared Fourier transform of the filter.

A commonly used parameter is σ8, the filtered variance in spheres of radius
RT = 8h−1 Mpc – roughly corresponding to the scale of massive galaxy
clusters – given by:

σ2
8 =

V

2π2

∫
dk

k
k3P (k)

∣∣f(k 8h−1 Mpc)
∣∣2 . (14.26)

Remember that k in the power spectrum is the comoving wavenumber and
this is why the factor h−1 appears in the scale. Current estimates of σ8

(which can be obtained from e.g. cosmic shear surveys or the abundance
of massive galaxy clusters) are in the range σ8 ' 0.7− 1.1.

14.5 Complications: Redshift Space Distortions and

Biased Galaxy Formation

In order to interpret the observed 3D distribution of galaxies in terms of
the underlying power spectrum of the matter distribution, we need to take

16



into account two further complications: peculiar velocities (relative to the
Hubble flow) which affect our determination of distance from the measured
galaxy redshifts, and the fact that light (i.e. galaxies) may not be unbiased
tracers of the mass.

That is, even if we measure accurately the redshifts of many galaxies in a
region on the sky, the result is not a true 3D picture. This is because we do
not observe galaxies in 3D. Rather, we observe their angular position on the
sky, θ, and redshift z (at the distances of interest there is no z-independent
distance estimator). But redshift has two components: the cosmological
component due to the expansion of the universe, and the Doppler effect of
peculiar velocities:

1 + z → (1 + z)(1 + v/c) or z =
DH0 + v

c

We can thus define a redshift space s which is a transform of the real (or
proper) space r, as follows:

s1 = r1 =
zc

H0
θ1 ; s2 = r2 =

zc

H0
θ2 ; s3 = r3 +

v3

H0

It is the radial axis of redshift which is modified by the Doppler effects of
peculiar velocities. The complication is that the peculiar velocities arise
from the clustering itself. Thus, the apparent clustering pattern in redshift
space differs systematically from that in real space and the spatial correla-
tion function of galaxies, ξg(r), which is isotropic in real space is no longer
isotropic in redshift space.

There are two effects at work here. The first, termed the ‘Fingers of God’
(see Fig. 14.1), is due to the velocity dispersion of galaxies within rich
clusters and stretches out a cluster in redshift space. Since this affects only
redshift and not position on the sky, the stretching occurs only radially
(this is why the ‘fingers’ point back to observer). The other important
redshift distortion is the Kaiser effect, due to galaxies bound to a central
mass and still undergoing infall. It differs from the Fingers-of-God in that
the peculiar velocities are coherent, not random, towards the central mass,
though the effect is more subtle. The two effects are sketched in Fig. 14.7.
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Real space:

Linear regime

Redshift space:

Squashing effect

Turnaround

Collapsed

Collapsing Finger-of-god

Figure 14.7: Redshift-space distortions

It can be shown that the redshift-space and real-space density fields are
related via:

δm,z = δm,r

[
1 + f(Ωm,0)µ

2
]

where µ is the cosine of the angle between the velocity vector and the line
of sight, and f(Ωm,0) ≈ Ω0.6

m,0 is the ‘velocity suppression factor’ proposed
by Peebles.

The second complication arises from the fact that in galaxy redshift sur-
veys we map out the distribution of the light, whereas we are interested
in the mass density field. The relation between mass and light is deter-
mined by complex physical processes, but is generally described by a linear
bias parameter b (that is, we assume some linear response of the galaxy
formation process to small density perturbations), such that:

δlum = b · δm = δm + (b− 1) δm

The point of the trivial rearrangement is to emphasize that the observed
density fluctuation is a mixture of the dynamically generated density fluc-
tuation, plus an additional term due to bias, which populates different
regions of space in different ways. The first term is associated with pecu-
liar velocities, but the second is not—the enhancements in galaxy densities
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are just some additional pattern.

In redshift space, we therefore add the anisotropic perturbations due to
the dynamical component to the isotropic biased component, to obtain

δlum,z = δm,r

[
1 + f(Ωm,0)µ

2
]
+(b−1)δm,r = δlum,r

[
1 +

f(Ωm,0)µ
2

b

]
(14.27)

Redshift-space effects thus give us a characteristic anisotropy of clustering,
which can be used to measure the parameter β = Ω0.6

m,0/b. The power
spectra in redshift and real space are related by:

Pz
Pr

=
(
1 + βµ2

)2

14.6 Baryonic Acoustic Oscillations

Both the AAT 2dF and the SDSS teams announced in 2005 the discovery of
a peak in ξ(r) at r ' 150 Mpc which they interpreted as the first evidence
for acoustic peaks in the galaxy power spectrum (see Figures 14.6 and 14.8).
The discovery, which had been anticipated a decade earlier, was heralded
as a spectacular confirmation of the standard cosmological model in which
mass overdensities grow from the seeds of CMB fluctuations. Since then,
following these Baryonic Acoustic Oscillations (or BAO for short) over
cosmic time has been a major motivation for reaching to ever-increasing
size and depth in large galaxy surveys.

In Lectures 9 and 10 we discussed at length the conditions in the Universe
around the epoch of recombination. We saw that, prior to recombination
and decoupling, the Universe consisted of a hot plasma of photons and
baryons which were tightly coupled via Thomson scattering. The compet-
ing forces of radiation pressure and gravity set up oscillations in the photon-
baryon fluid. These oscillations left their imprint in the anisotropies of the
CMB, emitted at zdec = 1090.

But what about the baryons? After decoupling, a baryon wave correspond-
ing to an overdensity stalls. The radius reached at that point becomes
imprinted on the distribution of baryons as a density excess. Since the
baryons and dark matter interact though gravity, the dark matter also
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Figure 14.8: Left: Baryonic acoustic peak in the two-point correlation function of ∼ 106

galaxies at redshifts 0.4 < z < 0.7 as determined by the Baryon Oscillation Spectroscopic
Survey (BOSS) project. The blue solid line is the best-fit BAO model, while the red line
shows the fit by a model which does not include the BAO. Right: The BAO feature of
the left panel is shown here in the power spectrum of the galaxy distribution: a spike in
real space becomes a series of ripples in k-space. The results for three successive data
releases of the BOSS project are shown separately. The data and the best fits have been
normalised by dividing by the smooth model shown by the red continuous line in the left
panel. (Figures reproduced from Anderson et al. 2014).

preferentially clumps on this scale. There is thus a increased probabil-
ity that a galaxy will form somewhere in the higher density remains of the
stalled baryon wave. The galaxy two-point correlation function would then
show a ‘bump’ on this scale s, reflecting the higher probability of finding
two galaxies separated by a distance s.

The scale s is usually close to the sound horizon, the comoving distance
a sound wave could have travelled in the photon-baryon fluid by the time
of decoupling. Given that the density of photons is much higher than
the density of baryons, the photons decouple (i.e. they stop noticing the
baryons) earlier than the baryons stop noticing the photons. The delay
between the two is sometimes referred to as the ‘baryon drag’. Defining
the respective epochs as the time when the optical depth is one, zdec = 1090
for the photons (as we saw in Lecture 9), and zdrag = 1060. The sound
horizon at zdrag is rdrag = 147.4± 0.3 Mpc (comoving), as determined from
the analysis of the full set of Planck data.
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14.6.1 Cosmological Parameters from BAO

We saw in Lecture 10.3.1 that the first Doppler peak in the CMB fluc-
tuations acts as a cosmological ‘standard ruler’ from which cosmological
parameters can be deduced via the angular diameter distance. The position
of the first peak is that expected for a flat Universe with Ωk,0 = 0.

The CMB anisotropies give us a measure of the angular extent of the sound
horizon on the sky (at the surface of last scattering) at a single epoch, zdec.
With the baryons, we can follow the evolution of the peak in BAO over
cosmic times and thereby perform an analogous angular diameter distance
test at different redshifts using rdrag as the standard ruler. We have already
seen in Lectures 6 and 10 that it is the combination of different tests, with
different sensitivities to the cosmological parameters, that allows us to
reduce significantly the allowed parameter space for these parameters.

The use of BAO in this context has attracted a great deal of attention in
the last ten years for the following reasons: (i) The scale rdrag ' 150 Mpc
is sufficiently large that it remains in the linear regime to the present day;
thus, the signal it produces in the large-scale distribution of galaxies is
essentially insensitive to the astrophysical processes that occur on much
smaller scales. (ii) BAO do not suffer from the systematic uncertainties
that potentially limit the progress that can be made with Type Ia super-
novae (Lecture 6), in particular the possibility that the relations between
colour, luminosity and light curve shape may not be entirely constant with
look-back time. Recall that we do not yet have an established physical
model for Type Ia explosions: their use as ‘standard candles’ is based
entirely on empirical considerations.

On the other hand, the small amplitude of the baryon acoustic peak and
the large size of the relevant scales imply that volumes of many Gpc3 must
be probed and samples of many hundreds of thousands of galaxies must be
assembled in order to follow the peak over a range of redshifts.

With BAO, it is possible (after correction for the effects described in Sec-
tion 14.5) to determine the angular diameter distance and the Hubble rate
separately, by measuring the clustering scale s respectively along the line
of sight (via redshift measurements) and tangentially on the sky (see Fig-
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Figure 14.9: The two-dimensional correlation function of galaxies in the BOSS sample
in bins of 1h−1 × 1h−1 Mpc2. The ring of slightly enhanced clustering at r‖ = r⊥ '
100h−1 Mpc is the BAO signal. (Figure reproduced from Samushia et al. 2014).

ure 14.9). Specifically:

H(z) =
c∆z

s‖(z)
(14.28)

and
dA(z) =

s⊥
∆θ (1 + z)

. (14.29)

Both H(z) and dA(z) depend on the cosmological parameters Ωm,0, Ωk,0,
and ΩΛ,0 (eqs. 5.12 and 5.34). Thus, the possibility that by tracking the
BAO feature from the present time to z ∼ 1 may yield clues to the nature
of dark energy, which takes over cosmic expansion during this epoch, has
motivated huge galaxy surveys in the last decade. Two of the largest are
the AAT WiggleZ survey and the SDSS BOSS project, each consisting of
hundreds of thousands of galaxy redshifts out to z ∼ 1.

In Figure 14.10 we show joint constraints from these projects on the pa-
rameters H0, Ωm,0 and Ωk,0. Figure 14.11 shows confidence contours for
the dark energy equation of state parameter w (p = wρ), where p is the
pressure and ρ is the density—see Lecture 6.4), assumed to be a constant
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Figure 14.10: Left: Joint probability contours (68% and 95%) on H0 and Ωm,0 obtained by
combining the BOSS BAO with measurements with CMB and SN data (Figure reproduced
from Anderson et al. 2014). Right: Probability contours between Ωk,0 (y-axis) and Ωm,0

(x-axis) shown separately for CMB (WMAP), BAO (WiggleZ) and SN data, illustrating
the complementarity of the three techniques (Figure reproduced from Blake et al. 2011).

in the left panel, and assumed in the right panel to be a simple function of
the scale factor a:

w(a) = w0 + wa (1− a) , (14.30)

as already considered in Lecture 6.4.
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Figure 14.11: Left: Probability contours in the w and H0 obtained by combining BOSS
BAO with Planck CMB observations, showing the degeneracy between the Hubble con-
stant and the dark energy equation of state. Right: Constraints on a varying equation
of state parameter according to eq. 14.30 from BAO+CMB, as indicated. (Both figures
reproduced from Anderson et al. 2014).
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The outcome of all of these tests is the ‘precision cosmology’ which we
discussed at the beginning of this course (Table 1.1). In particular, note
that no evidence has been found yet to support suggestions that dark
energy is anything more than Einstein’s cosmological constant; the BOSS
results reproduced in Figure 14.11 are entirely consistent with wa = 0,
w0 = −1. As can be seen from Figure 14.12, the cosmic distance scale
indicated from the SN observations is in excellent agreement with that
deduced from BAO.

Figure 14.12: Comparison between the SN and BAO mapping of the cosmic distance
scale. For the purpose of this figure, the SN dL measurements have been converted to dA,
assuming dA(z) = dL(z)/ (1 + z)2 (Figure reproduced from Blake et al. 2011).

14.7 The Matter Power Spectrum

The large scale distribution of galaxies traces the matter power spectrum
on scales of 10s to 100s of Mpc. This is only part of the story, however.
As illustrated in Figure 14.13, cosmic structure has now been probed over
four orders of magnitude, from scales of a few Mpc via the intergalactic
Lyman alpha clouds we studied in Lectures 12 and 13, through scales of
∼ 10 Mpc using weak gravitational lensing (to be introduced in Lecture
16), to scales of ∼ 1–10 Gpc with the CMB fluctuations that were the
subject of Lecture 10.
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Figure 14.13: The power spectrum of density fluctuations in the Universe. The y-axis
scale, labelled ‘Density fluctuations’, shows ∆2(k) ∝ k3P (k) (eq. 14.18), while the x-axis
is the comoving scale (1 Mpc ∼ 3.3 Mly). Different tracers of the density are used on
different scales. The turquoise curve shows a fit to the data with the parameters of the
standard ΛCDM cosmological model (Figure credit: Max Tegmark, MIT).

Max Tegmark’s website (http://space.mit.edu/home/tegmark/movies.html)
has a hands-on tool which allows one to see directly the effect of varying
cosmological parameters on the shape and normalisation of P (k).
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