
M. Pettini: Introduction to Cosmology — Lecture 7

THERMAL HISTORY OF THE UNIVERSE

The Universe today is bathed in an all-pervasive radiation field, the Cosmic
Microwave Background (CMB) which we introduced in Lecture 5. The
spectrum of this radiation is that of a blackbody:

Bλ(T ) [erg s−1 cm−2 Å−1 sr−1] =
2hc2/λ5

ehc/λkT − 1
(7.1)

Bν(T ) [erg s−1 cm−2 Hz−1 sr−1] =
2hν3/c2

ehν/kT − 1
(7.2)

with T = 2.7255 to a very high precision (see Figure 7.1).

Let us calculate the ratio of number of photons to baryons today. The
total energy density of a blackbody radiation field is:

u = aT 4 (7.3)

where a = 4σ/c = 7.57 × 10−15 erg cm−3 K−4 is the radiation constant1

and σ is the Stefan-Boltzmann constant.2 The average energy per photon
of blackbody radiation is 〈u〉 = 2.70 k T , where k is Boltzmann constant

1Not to be confused with the scale factor of the universe, a = (1 + z)−1!
2You should have already encountered these relations in the Stellar Structure and Evolution course.

Figure 7.1: The spectral shape of the Cosmic Microwave Background measured by the
COBE satellite is that of a blackbody with temperature T = 2.7255 K.
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(k = 1.38 × 10−16 erg K−1). Thus, today the number density of CMB
photons is:

nγ,0 =
u

〈u〉
=

a

2.70 k
T 3 =

7.57× 10−15

2.70 · 1.38× 10−16
·2.733 = 4.1×102 cm−3 (7.4)

On the other hand, the average density of baryons is given by:

nb,0 =
Ωb,0 · ρcrit

〈mb〉
=

0.0488 · 8.5× 10−30 g cm−3

1.67× 10−24 g
= 2.5× 10−7 cm−3 (7.5)

where ρcrit = 3H2
0/8πG is the critical density (see Lecture 1) and 〈mb〉 is

the mean mass per baryon. Thus:
nb,0

nγ,0
= 6.1× 10−10 (7.6)

i.e. there are more than a billion photons per baryon. This ratio has
remained approximately constant since ∼ 1 s after the Big Bang.

However, the ratio of the energy densities in baryons and photons is:

ub,0

uγ,0
=
nb

nγ

〈mb〉 c2

〈u〉
= 9.0× 102 (7.7)

and, if we include non-relativistic (i.e. ‘cold’) dark matter and relativistic
neutrinos:

um,0

urad,0
' 3.4× 103 . (7.8)

Thus, today the Universe is matter dominated.

However, this was not always the case. We have already seen in Lecture 2
(eqs. 2.25 and 2.26), the energy density of matter increases as
ρm = ρ0 (1 + z)3, while for radiation ρrad = ρ0 (1 + z)4. As we look back in
time then, there will come an epoch (at zeq ' 3370) when um,0/uγ,0 = 1;
before that time the Universe was radiation dominated.

Another properties of blackbody spectra is that λmaxT = constant, where
λmax is the wavelength at which Bλ(T ) peaks. This relation, known as
Wien’s law, applies equally to stars (whose emergent spectrum is approx-
imately a blackbody) as to the CMB photons. Thus, as the wavelengths
of the CMB photons decrease as (1 + z)−1, the temperature of the back-
ground increases as TCMB = 2.73 (1 + z) K. The early Universe was a very
hot place!3

3The expectation that TCMB = 2.73 (1 + z) has been verified experimentally up to z ' 3 using the
rotational levels of the CO molecule as a ‘thermometer’.
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At early times, the typical photons are sufficiently energetic that they
interact strongly with matter: the whole Universe sits at a temperature
dictated by the radiation. That is why we speak of the ‘Thermal History’
of the Universe. Note that temperature and energy can be converted to
one another via Boltzmann constant: 1 eV = 1.1605× 104 kK.

We also saw in Lecture 2 (eq. 2.24) that in the radiation-dominated era the
scale factor of the Universe evolves as a(t) = (t/t0)

1/2. Given that T ∝ a−1,
we have a relation between time and temperature:

t(s) =

(
T

1.5× 1010 K

)−2

=

(
T

1.3 MeV

)−2

(7.9)

7.1 The Universe at t < 1 s

7.1.1 Planck Time

How can we even begin to speculate what the Universe was like before it
was 1 s old? There are two things to keep in mind here. (1) Although
we cannot explore this era empirically, we can test the consequences of our
models with observations of the Universe at later times. (2) The underlying
assumption is that the laws of physics are time-invariant. Of course we do
not know that this is the case, but if some parameters have changed during
the course of time (such as the cross-sections of some nuclear reactions),
cosmological measurements may be the only way to find out.

The logical consequence of T = 2.73/a is lima→0 T =∞, but this extrapo-
lation of classical physics eventually breaks down when the wavelength as-
sociated with a particle approaches its Schwarzschild radius, that is when:

λdB =
2πh̄

mc
= πrs =

2πGm

c2
. (7.10)

The above equality defines the Planck mass:

mP =

(
h̄c

G

)1/2

' 1019 GeV ; (7.11)

the Planck length:

lP =
h̄

mPc
=

(
h̄G

c3

)1/2

' 10−33 cm ; (7.12)
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and the Planck time:

tP =
lP
c

=

(
h̄G

c5

)1/2

' 10−43 s . (7.13)

At t ' tP classical spacetime dissolves into a foam of quantum black holes;
current physical theory does not take us beyond this limit. This is also
referred to as the ‘quantum gravity limit’ because it involves new physical
laws that unify quantum physics (which describes the strong and weak
nuclear forces and the electromagnetic force) and gravity (described by
Einstein’s general relativity).

7.1.2 Freeze-out

The key to understanding the thermal history of the Universe is the com-
parison between the rate of interaction for a given process, Γ, and the
expansion rate of the Universe, H. If the condition Γ � H is satisfied,
then the timescale of particle interactions is much smaller than the char-
acteristic expansion timescale:

tc =
1

Γ
� tH =

1

H
, (7.14)

and local thermal equilibrium4 is established before the effect of the ex-
pansion becomes relevant. As the Universe cools, Γ for some interactions
may decrease faster than the expansion rate; when tc ∼ tH, the particles in
question decouple from the thermal plasma. Different particle species may
have different interaction rates, and therefore may decouple at different
times/temperatures.

7.1.3 Major Milestones

Physicists wonder whether the four fundamental interactions in nature:
gravity, the strong and weak nuclear forces, and electromagnetism, may be
manifestations of a single fundamental type of interaction. This approach
may just reflect a human desire to reduce our description of the physical
world to the smallest number of parameters. It is a logical extension of the

4A system of particles is said to be in thermodynamic equilibrium if the particles exchange energy
and momentum efficiently.
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Figure 7.2: The four fundamental interactions became distinct with the falling tempera-
ture of the Universe.

scientific method that explains the wide variety of compounds on Earth as
different combinations of the 98 chemical elements of the periodic table,
themselves consisting of different numbers of protons and neutrons, and so
on.

The unification of the four forces of nature implies that at sufficiently
high energies their strengths become comparable, whereas today they are
very different from each other. This idea appears to be supported by the
results of experiments using particle accelerators which have shown that
the strengths of the electromagnetic and weak interactions become closer
to one another at high interaction energies.

If all four forces were unified, this must have happened before the Planck
time; t ' 10−43 s is taken as the time when gravity became separate from
the other three forces and we enter the Grand Unified Theory (GUT) era
(see Figure 7.2).

At t ∼ 10−35 s, T ∼ 1027 K' 1014 GeV (the GUT transition), the
Electroweak and Strong forces emerge, and quarks (that interact mostly
through the strong force) and leptons (which interact mostly through the
weak force) and their anti-particles acquire individual identities.

The end of the GUT era is thought to be associated with two major events
in the history of the Universe: an exponential expansion between t = 10−36

and 10−34 s called inflation, and baryogenesis. The first was postulated to
explain, among other things, why we live in a flat Universe with k= 0 (recall

5



the discussion at the end of Lecture 5.3.3), while the latter is required to
explain the absence of anti-matter in today’s Universe. We shall return to
both topics in a later lecture.

At t ∼ 10−12 s, T ∼ 1015 K' 100 GeV (the Electro-Weak transition),
the electromagnetic and weak forces become separate. This is when lep-
tons acquire mass. The corresponding bosons also appear: intermediate
vector bosons of electroweak force decay into massive W+, W−, and Z0

bosons that mediate the weak force, and the massless photon, that medi-
ates electromagnetic force. The massive W±, and Z0 bosons (with masses
m ∼ 80–90 GeV) decay soon thereafter, at the temperature corresponding
to their mass. Photons, being massless, do not. It is also possible that
baryogenesis may have taken place at this time, rather than at the GUT
transition.

At t ∼ 10−6 s, T ∼ 1012−13 K' 200 MeV – 1 GeV (the QCD, or Quark-
Hadron transition), is when quarks can no longer exist on their own;
they combine into hadrons (baryons and mesons), glued together by gluons
(strong force bosons). Quark confinement commences. Some types of
WIMPS (Weakly Interacting Massive Particles, a generic name for a yet to
be discovered Dark Matter particle) could have been made at this epoch.

7.2 The Universe at t > 1 s

The period from t ∼ 10−6 to t ∼ a few s is sometimes referred to as the
the Lepton era because of two important events that involve neutrinos
and electrons. Note that as the temperature falls below ∼ 1 GeV we enter
an energy regime where elementary particle physics is well understood and
accessible to experimental verification with particle accelerators such as
the Large Hadron Collider at CERN.

7.2.1 Decoupling of Neutrinos (t ' 1 s, T ' 1MeV, ' 1010 K)

T ' 1012 K corresponds to ∼ 100 MeV. This energy is much less that the
rest-mass energy of protons and neutrons (mp = 938.3 MeV/c2 and mn =
939.6 MeV/c2 respectively); baryons are just too heavy to be produced
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Figure 7.3: The Standard Model of elementary particles with the three generations of
matter and gauge bosons in the fourth column.

(by pair production) at this temperature. Thus, all the baryons that exist
today must have already been present when the Universe was one millionth
of a second old. Of the leptons, only the electron and the neutrinos (and
their anti-particles) have rest mass energies significantly below 100 MeV
(see Figure 7.3). Thus, at T ' 1012 K the relativistic species present and
making up the radiation energy density, urad, are electrons, neutrinos and
their anti-particles, and photons. These species are kept in equilibrium by
the following reactions:

e± + γ ↔ e± + γ : Compton scattering

e+ + e− ↔ γ + γ : pair production and annihilation

ν + ν̄ ↔ e+ + e− : neutrino− antineutrino scattering

ν + e± ↔ ν + e± : neutrino− electron scattering

(7.15)

so long as the reaction rate is faster than the expansion rate (section 7.1.2).
The reactions involving neutrinos are mediated by the weak force, for which

Γ

H
'
(

T

1.6× 1010 K

)3

, (7.16)

so that when T falls below 1010 K the neutrinos are no longer in equilibrium
and decouple from the rest of the plasma. At freeze-out, the neutrinos are
still relativistic, with a thermal distribution at the same temperature as the
electrons and photons that remained in mutual equilibrium. Cosmological
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neutrinos have been propagating through the Universe without further in-
teractions since redshift z ∼ 1010, and have kept their thermal distribution
to the present day, with the temperature decreasing as T ∝ 1/a. Unfor-
tunately, given the very low cross-section for interaction of neutrinos with
matter, it is hard to think of how this low-energy neutrino background
could be detected with current technologies. If it were possible, it would
give us a snapshot of the Universe at much earlier times than the CMB
(t ' 1 s as apposed to t ' 372 000 years).

7.2.2 Electron-Positron Annihilation

When the temperature falls below 500 keV (or ∼ 5 × 109 K at t ' 5 s),
the number density of photons with energies above the pair production
threshold of me = 511 keV/c2 is insufficient to maintain the second reac-
tion in eq. 7.15 in equilibrium. The reaction now proceeds preferentially
in the right direction (pair annihilation), leaving only a small number of
electrons to balance the protons produced by baryogenesis (our Universe
is electrically neutral).

Pair annihilation injects additional energy into the photon gas, correspond-
ing to the kinetic and rest mass energies of the e+, e− pairs. This re-heats
the photon population, but not the bulk of the neutrinos since they are no
longer in thermal equilibrium with the photons.5 From the thermodynam-
ics of this process, we have (after annihilation):

Tν =

(
4

11

)1/3

Tγ (7.17)

which has been maintained to the present day, so that the blackbody spec-
trum of the cosmic neutrino background is predicted to have a temperature
Tν = 0.71× 2.73 = 1.95 K.

5Because the decoupling of the neutrinos is not instantaneous, some of the high energy neutrinos are
still in thermal equilibrium with the photons and will feel the re-heating leading to a slight excess of high
energy neutrinos relative to a blackbody spectrum.
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7.3 Equilibrium Thermodynamics

Before turning to consider baryons in the next lecture, we recall some con-
cepts from statistical mechanics and we’ll use them to derive an expression
for the energy density of a fully relativistic plasma.

In statistical mechanics, it is convenient to describe an ensemble of particles
in phase space, defined by six parameters, the cartesian coordinates x, y, z,
and the corresponding momenta px, py, pz. We further distinguish between
fermions—particles of half-integer spin which obey Fermi-Dirac statistics,
such as quarks and leptons, and bosons—particles of integer spin that obey
Bose-Einstein statistics, such as photons and the other force carriers in
Figure 7.3. Fermions obey Pauli’s exclusion principle which states that no
two identical fermions can occupy the same quantum state, while bosons
do not suffer any such restriction.

From Heisenberg uncertainty principle, ∆p∆x = h, it follows that h3 is
the phase space volume occupied by a single particle (or, alternatively,
the density of states in phase space is 1/h3). If a particle has g internal
degrees of freedom (e.g. spin, polarization), the density of states becomes
g/(2πh̄)3. It follows that the number density of particles (per unit volume
in real space) with momentum states in the range of d3p is:

dn = g
1

(2πh̄)3
f(p) d3p (7.18)

where f(p) is the distribution function, such that f(p) dp is number of
particles with momentum between p and p + dp.6 The number density
of particles (again in real space) at a given temperature T is found by
integrating 7.18 over momentum:

n(T ) =
g

(2πh̄)3

∞∫
0

f(p) d3p

=
g

(2πh̄)3

∞∫
0

f(p) 4πp2 dp

(7.19)

using spherical coordinates, and the energy density, u = ρ(T )c2, is the

6We have assumed isotropy, which requires that the momentum dependence is only in terms of the
magnitude of the momentum, i.e. p ≡ |p|.
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integral of the distribution function weighted by energy:

u =
g

(2πh̄)3

∞∫
0

f(E)E(p) 4πp2 dp (7.20)

The distribution function in energy terms, f(E), is given generally by:

f(E) =
1

eE/kT ± 1
(7.21)

where the + sign refers to fermions and the − sign to bosons. As usual,
the total energy has contributions from the rest mass and the momentum:

E2 = m2c4 + p2c2 .

In the relativistic limit (i.e. kT � mc2), E = pc. Using the substitution
y = pc/kT , we have:

p3 = y3

(
kT

c

)3

; dp =
kT

c
dy

so that eq. 7.20 can be re-written as:

u ≡ ρ(T )c2 =
g

(2πh̄)3

∞∫
0

pc

epc/kT ± 1
4πp2dp

=
g

(2πh̄)3
4πc

(
kT

c

)4
∞∫

0

y3

ey ± 1
dy .

(7.22)

Now (and we are almost there!), it can be shown that the integrals have
the following values:

∞∫
0

y3

ey − 1
dy =

π4

15
(Bose-Einstein statistics), and

∞∫
0

y3

ey + 1
dy =

7

8

π4

15
(Fermi-Dirac statistics) .

Defining:

a ≡ 8π5k4

15c3(2πh̄)3
, (7.23)
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we conclude that:

u =
g

2
a T 4 for bosons, and

=
7

8

g

2
a T 4 for fermions,

(7.24)

in equilibrium when kT � mc2.

Note that for photons g = 2 (two polarizations), so that we recover the
familiar relation for the energy density of a radiation field u = a T 4. The
total energy density of the mixture of photons, electrons, positrons, neu-
trinos and antineutrinos at time t ∼ 1 s is thus:

u = ρ(T )c2 = c2
∑

ρi(T ) =
1

2
g∗ a T

4 (7.25)

where g∗ is the effective number of degrees of freedom:

g∗ =
∑

bosons

gi +
7

8

∑
fermions

gj . (7.26)

For photons g = 2 (two polarization states), for electrons and positrons
g = 2 also (two spin states), and for neutrinos g = 1, assuming that
neutrinos are purely left-handed (only one helicity state). Thus:

u =
1

2
a T 4

[
2 + 4 · 7

8
+ 2 · 7

8
Nν

]
(7.27)

or

u = a T 4

[
1 +

7

4
+

7

8
Nν

]
(7.28)

where Nν is the number of neutrino families.
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