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ABSTRACT
Mounting discoveries of extrasolar planets orbiting post-main-sequence stars motivate stud-
ies to understand the fate of these planets. In the traditional ‘adiabatic’ approximation, a
secondary’s eccentricity remains constant during stellar mass-loss. Here, we remove this ap-
proximation, investigate the full two-body point-mass problem with isotropic mass-loss, and
illustrate the resulting dynamical evolution. The magnitude and duration of a star’s mass-loss
combined with a secondary’s initial orbital characteristics might provoke ejection, modest
eccentricity pumping, or even circularization of the orbit. We conclude that Oort Clouds and
wide-separation planets may be dynamically ejected from 1–7 M� parent stars during AGB
evolution. The vast majority of planetary material that survives a supernova from a 7–20 M�
progenitor will be dynamically ejected from the system, placing limits on the existence of
first-generation pulsar planets. Planets around >20 M� black hole progenitors may easily
survive or readily be ejected depending on the core collapse and superwind models applied.
Material ejected during stellar evolution might contribute significantly to the free-floating
planetary population.

Key words: Oort Cloud – planets and satellites: dynamical evolution and stability – planet–
star interactions – stars: AGB and post-AGB – stars: evolution – supernovae: general.

1 IN T RO D U C T I O N

Understanding the formation and subsequent dynamical evolution
of exoplanets has been a motivational hallmark for many obser-
vational and theoretical investigations. However, extrasolar planets
continue to be discovered in surprising and exotic environments, and
questions about the endstate of exoplanets are becoming increas-
ingly relevant. Few studies so far have modelled these systems,
which often feature evolved and variable parent stars. The rich dy-
namics therein fundamentally differ from studies of planets around
main-sequence stars.

Examples of exoplanets which do not orbit main-sequence stars
are growing. The first confirmed extrasolar planets were discov-
ered around a neutron star: specifically, the millisecond pulsar
PSR1257+12 (Wolszczan & Frail 1992; Wolszczan 1994). The
minimum masses of these three planets continue to be among the
lowest known to date, and two of these planets resonantly inter-
act. Sigurdsson et al. (2003) later discovered another pulsar planet,
around the binary radio millisecond pulsar PSR B1620−26. Exo-
planets are also thought to orbit white dwarfs and stars with white
dwarf companions. In the first category, GD 66 (Mullally et al.
2008, 2009), GD 356 (Wickramasinghe et al. 2010) and Gliese
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3483 (Matt Burleigh, private communication) are planet-hosting
stars. In the second category, examples are thought to include
Gl 86 = HD 13445 (Queloz et al. 2000; Mugrauer & Neuhäuser
2005; Lagrange et al. 2006), HD 27442 (Butler et al. 2001; Chau-
vin et al. 2006), and HD 147513 (Mayor et al. 2004; Desidera &
Barbieri 2007).

Additionally, planets have been discovered orbiting stars that
have moved away from the main sequence but are not yet stellar
remnants. Silvotti et al. (2007) discovered a giant planet orbiting
the extreme horizontal branch star V 391 Pegasi, Geier et al. (2009)
found a planet around the hot subdwarf star HD 149382, Lee et al.
(2009) reported circumbinary planets to the sdB+M eclipsing sys-
tem HW Virginis, and Setiawan et al. (2010) suggested that the
planet orbiting the red horizontal branch star HIP 13044b might be
of extragalactic origin. Cataclysmic variables are another class of
systems which might harbour planets, and recently, planets around
the cataclysmic variables QS Vir (Qian et al. 2010a), DP Leo (Qian
et al. 2010b), HU Aqr (Qian et al. 2011) and DP Leonis (Beuermann
et al. 2011) have been reported.

Prospects for discovering additional planets orbiting white dwarfs
(Drake et al. 2010; Faedi et al. 2011) and extreme horizontal branch
stars (Bear & Soker 2011) are promising, and observational cam-
paigns to do so have already been initiated (Hogan, Burleigh &
Clarke 2009; Benatti et al. 2010; Schuh et al. 2010). The Kepler
mission can detect even smaller bodies around white dwarfs (Di
Stefano, Howell & Kawaler 2010).
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Theoretical investigations of the evolution of planets around post-
main-sequence stars have focused primarily on planet engulfment
and interaction with the expanding stellar envelope, both for ex-
oplanets and, specifically, for the Earth. Villaver & Livio (2007,
2009), Massarotti (2008) and Nordhaus et al. (2010) use partic-
ular stellar evolutionary tracks to determine ranges of semimajor
axes at which planets are likely to be engulfed. In this regime, tidal
modelling has a significant effect on the subsequent orbital evo-
lution. However, as summarized by Hansen (2010), the nature of
tidal dissipation is poorly understood and continues to yield dif-
ferent results depending on the model and assumptions used. For
this reason, the fate of the Earth is uncertain. Sackmann, Boothroyd
& Kraemer (1993), Rybicki & Denis (2001), Schröder & Connon
Smith (2008) and Iorio (2010) – all explore the fate of the Earth
in light of the Sun’s post-main-sequence mass-loss, with differing
results. Alternatively, Debes & Sigurdsson (2002) focus on the sta-
bility of multiplanet systems and link stellar mass-loss to instability
time-scales. By doing so, they demonstrate how multiple planets
beyond the reach of the star’s expanding envelope might become
unstable.

In this study, we consider just a single planet, or a smaller body.
We perform a detailed analysis of the variable-mass two-body prob-
lem and apply the results to a wide range of star–planet fates that
encompass all stellar masses �150 M�. We focus on how stellar
mass-loss affects the eccentricity of a planet or planetary material,
a link often ignored in previous studies. As a result, we show that
planetary material can be ejected from a system based on mass-loss
alone. We then quantify for what combination of parameters can we
expect this behaviour.

We start, in Section 2, by reviewing the history of the variable-
mass two-body problem and the corresponding equations of mo-
tion. We then analyse the orbital evolution in different mass-loss
regimes, determine where and when the traditionally used adiabatic
approximation holds, and estimate when the planets would become
unstable. In Section 3, we apply the theory to stars of all masses
up to 150 M� in order to pinpoint realistic systems which would
yield instability. We treat five different mass regimes in separate
subsections. We then discuss the caveats, implications and potential
extensions in Section 4, and conclude in Section 5.

2 THE GENER A L TWO-BODY MASS-LOSS
PROBLEM

2.1 Overview

Mass-loss in the two-body problem, where both bodies are consid-
ered to be point masses, has been studied for over a century (e.g.
Gyldén 1884; Mestschersky 1893). This situation is sometimes re-
ferred to as the ‘Gyldén–Mestschersky’ problem, even though this
particular case refers to the situation that both the variable mass
rates have the same functional dependence. The more general prob-
lem takes many forms, or special cases, which are nicely outlined
by table 1 of Razbitnaya (1985). One well-known form results from
the application of this general theory to binary stellar systems, a
formalism pioneered by Jeans (1924). The mass-loss prescription
that is named after him, Ṁ = −κMj , where M is mass and κ and j
are constants, has been analytically and numerically treated in many
subsequent studies. However, specific applications of mass-loss to
planetary systems have received little attention.

Soon after the advent of computer-based numerical integrations,
Hadjidemetriou (1963, 1966a,b) revisited and reformulated the
problem in important ways. Hadjidemetriou (1963) highlighted the

subtlety with which mass-loss must be treated in order to retain
physical interpretations of the evolution of orbital elements. He
modelled mass-loss as an additional acceleration that is a function
of a time- and mass-dependent velocity, and showed that for any
isotropic mass-loss prescription, a planet’s angular momentum h
satisfies

h = constant =
√

Gμa
(
1 − e2

)
, (1)

where a refers to the semimajor axis, e to the eccentricity, and
μ ≡ M� + M. The subscript ‘�’ refers to the star and the vari-
ables without subscripts refer to the (lower-mass) secondary in the
two-body system, which can be thought of as either a planet or
a particle; we will use the term ‘planet’. Despite the conserva-
tion of angular momentum, no such claim of conservation could be
made about the total energy of the system.1 Hadjidemetriou (1966b)
then significantly discovered that amidst great mass-loss, such as
in a supernova, the eccentricity of the secondary may increase, and
eventually lead to ejection from the system. That finding is the foun-
dation for this work. A subsequent series of papers (Verhulst 1969;
Verhulst & Eckhaus 1970; Verhulst 1972) provided an expansion of
and comparison with Hadjidemetriou’s results. Alcock, Fristrom &
Siegelman (1986) then approached the ejection possibilities from
a different perspective by considering the effect of vigorous mass-
loss of white dwarf progenitors on a comet. Later, Parriott & Alcock
(1998) demonstrated how the asymmetric mass-loss case yields a
greater fraction of cometary ejections.

Despite the large body of work on mass-loss in the two-body
problem,2 most studies continued to concentrate on binary stars.
Debes & Sigurdsson (2002) helped break this trend by analysing
the planetary case through the modelling of multiple planets orbiting
a single star. They assumed that the planets had equal masses and
initially circular orbits, and studied their motion in the ‘adiabatic’
approximation. This approximation holds when the mass-loss time-
scale is much greater than a planetary orbital time-scale. In this
approximation, the planet’s eccentricity is thought to remain nearly
constant, and hence, from equation (1),(

da

dt

)
adiabatic

= − a

μ

dμ

dt
. (2)

However, in the general planetary case, the angular momentum
is a function of eccentricity, which is generally not constrained to
be fixed. Other complicating factors are as follows.

(i) Because planetary orbits which are changing due to stellar
mass-loss are not closed, averaged orbital element expressions can
be misleading and counterintuitive, even though technically correct
(Iorio 2010).

(ii) In a single phase of stellar evolution, mass-loss is typically
non-constant (although monotonic) and may not be isotropic.

(iii) Stellar mass evolution typically involves multiple phases of
mass-loss on time-scales which can vary by orders of magnitude.

(iv) Several additional forces due to stellar evolution, such as
tides and dynamical friction from the expanding envelope, might be
necessary to model in order to describe the correct orbital evolution.

1 Because a system with isotropic mass-loss will maintain its rotational
symmetry, according to Noether’s Theorem, the angular momentum will be
conserved. Because the same system does not exhibit time invariance, the
energy of the system is not guaranteed to be conserved.
2 Rahoma, Abd El-Salam & Ahmed (2009) provides a detailed summary of
additional results from past papers, and Plastino & Muzzio (1992) summa-
rizes the ‘use and abuse’ of using a force to model mass-loss.
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Here, we do not place restrictions a planet’s semimajor axis, eccen-
tricity or orbital angles, but we do take measures to focus on our
results. We treat mass-loss as isotropic. Tidal effects are unimportant
in the regimes we consider here, and so we can safely ignore those.
To foster intuition for the mass-loss problem, and to obtain tractable
results, our analytics assume a constant mass-loss rate throughout.
However, some of our analytical results are completely indepen-
dent of the mass-loss rate assumed. The parameters for the example
cases used in this section were selected to best demonstrate differ-
ent aspects of the motion of this general two-body problem with
mass-loss; more realistic cases are presented in Section 3. There,
we apply the theory presented here to just a single phase of stellar
evolution, but do consider almost the entire phase space of stellar
mass.

2.2 Statement of equations

Although the equations of motion in terms of orbital elements for
the variable-mass two-body problem can be derived from first prin-
ciples, only a few authors (e.g. Hadjidemetriou 1963; Verhulst 1969;
Deprit 1983; Li 2008) have stated them in full without averaging or
approximation:

da

dt
= −a

(
1 + e2 + 2e cos f

)
1 − e2

1

μ

dμ

dt
, (3)

de

dt
= − (e + cos f )

1

μ

dμ

dt
, (4)

di

dt
= d�

dt
= 0, (5)

dω

dt
= d�

dt
= − sin f

e

1

μ

dμ

dt
, (6)

df

dt
= −d�

dt
+ n (1 + e cos f )2(

1 − e2
)3/2 . (7)

where i is inclination, � is the longitude of ascending node, � is the
longitude of pericentre, ω is the argument of pericentre and f is the
true anomaly. Equations (1), (3) and (4) are self-consistent and may
be derived from one another with the help of the vis viva equation.
The time derivative of position in terms of orbital elements and
the statement of the conservation of angular momentum in polar
coordinates give equations (6) and (7), respectively.

These equations may also be derived from more general consid-
erations. Gauge theory is a basis from which one may obtain sets
of equations such as Lagrange’s planetary equations and Gauss’
planetary equations by defining just a single perturbative acceler-
ation to the classic two-body problem, and a gauge velocity. The
formulation of the theory with regard to planetary dynamics as well
as extensive descriptions can be found in Efroimsky & Goldreich
(2003, 2004), Gurfil (2004), Efroimsky (2005a), Efroimsky (2005b,
2006), Gurfil (2007) and Gurfil & Belyanin (2008). Hadjidemetriou
(1963) showed that the sum of the isotropic mass variation of both
bodies is equivalent to a perturbative force with an acceleration of
�A = −(1/2)(dμ/dt)(1/μ)v, where v is velocity. This accelera-
tion yields equations (3)–(7) directly for a zero gauge.

Every variable in equations (3)–(7) is considered to be a function
of time. The mean motion, n, is equal to G1/2μ1/2/a3/2, where G is
treated as the standard gravitational constant. Although we use μ

throughout this work to emphasize how the motion is affected by
the sum of the mass-loss (or gained) by both bodies, the value of

the planetary mass and how it changes with time have a negligible
effect on the results for M� � M. For a 1 M� star, if one assumes a
planetary mass of ∼10 Jupiter masses, which is of the order of the
theoretical upper bound, then M/M� ∼ 1 per cent.

The planet’s true longitude, θ , varies according to

dθ

dt
= n (1 + e cos f )2(

1 − e2
)3/2 , (8)

which is not explicitly dependent on the mass-loss rate and hence is
equivalent to the case of no mass-loss. This equation demonstrates
that from the point of view of a fixed reference direction, the sec-
ondary will continue to circulate around a star that is losing mass
as long as the secondary remains bound.

For completeness, we consider the evolution of other traditionally
used orbital parameters. The planet’s eccentric anomaly, E, will vary
according to

dE

dt
= n (1 + e cos f )

1 − e2
+ sin f

e
√

1 − e2

1

μ

dμ

dt
. (9)

Note that the right-hand sides of equations (3)–(9) may be expressed
in terms of the eccentric anomaly instead of the true anomaly. The
planet’s mean motion will vary according to

dn

dt
= n

(
2 + e2 + 3e cos f

)
1 − e2

1

μ

dμ

dt
. (10)

The planet’s mean anomaly, 	, can be expressed as an explicit
function of time by use of the ‘time of pericentre’, τ :

d	

dt
= n + n (t − τ )

(
2 + e2 + 3e cos f

)
1 − e2

1

μ

dμ

dt
(11)

or, through Kepler’s equation, as

d	

dt
= n +

√
1 − e2 sin f

(
1 + e2 + e cos f

)
e (1 + e cos f )

1

μ

dμ

dt
, (12)

which is explicitly independent of time. Finally, the mean longitude,
λ, changes with time according to

dλ

dt
= d	

dt
+ d�

dt
= n − d�

dt

[√
1 − e2

(
1 + e2 + e cos f

)
1 + e cos f

− 1

]
.

(13)

Throughout this paper, we denote initial values by the subscript
‘0’.

2.3 Parametrizing mass-loss

Suppose the mass-loss rate is constant and equal to −α, such that
α > 0. Then μ = G(μ0 − αt), and

1

μ

dμ

dt
= −

(μ0

α
− t

)−1
. (14)

We can better quantify adiabaticity and various regimes of motion
due to mass-loss by defining a dimensionless ‘mass-loss index’, 
:


 ≡ α

nμ

= 1

2π

(
α

1 M� yr−1

) ( a

1 au

)3/2
(

μ

1 M�

)−(3/2)

. (15)

This parameter provides a scaled ratio of the orbital period to the
mass-loss time-scale. The initial value of the index is 
0. Hence,
the time evolution of 
 is governed by

d


dt
= −3


(
1 + e cos f

1 − e2

)
1

μ

dμ

dt
. (16)
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When 
 � 1, a system can be considered ‘adiabatic’ – the case we
treat first.

2.4 ‘Adiabatic’ regime evolution

2.4.1 Adiabatic eccentricity evolution

We begin with analysing the equations of motion by first con-
sidering equation (4), because all non-zero equations of motion
explicitly include e in some manner. Note importantly that the
equation demonstrates that an initially circular planet will not re-
main on a circular orbit, and that the planet’s eccentricity will un-
dergo oscillations on orbital time-scales when the parent star loses
mass.

We can solve equation (4) by noting that in the adiabatic approx-
imation (
 � 1), the first term in equation (7) is considered to be
negligible compared to the second term (= dθ /dt), because the first
term is proportional to the mass-loss rate. Further, μ is assumed to
remain fixed over the course of one orbit. Hence, in this regime,
equation (4) may be integrated directly over the true anomaly, with
the result

eadiabatic = e0 + 
0

(
1 − e2

0

)3/2
sin f

1 − e0 cos f
. (17)

According to equation (17), after each orbit the eccentricity
will return to its initial value. During the orbit, the amplitude of
(eadiabatic − e0) is 
0(1 − e2

0) ∝ α. Thus, assuming a current value of
α� ≈ 10−13 yr−1, the Earth’s eccentricity is raised by about 10−14

each year due to the Sun’s mass-loss.
Fig. 1 demonstrates the accuracy of equation (17) when compared

with the evolution from the full equations of motion (equations 3–7)
for a ao = 1 au planet orbiting a μ0 = 1 M� star which is losing
mass at the rate of 10−5 M� yr−1 (8 orders of magnitude greater than
α�). The agreement is excellent over the course of a single orbit.
Over time, the approximation gradually worsens, as the evolution
of 
0 is not taken into account in equation (17).

Figure 1. Analytic approximation to the eccentricity evolution in the adia-
batic regime. Shown here is the difference in eccentricity of a planet evolving
according to equation (17) compared to equations (3)–(7). The planet is lo-
cated at a0 = 1 au from a μ0 = 1 M� star that is losing mass at the rate of
a rate of α = 10−5 M� yr−1 (
0 ≈ 1.6 × 10−6). The differently coloured
lines from the top of each crest moving downwards correspond to e0 = 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively.

2.4.2 Adiabatic semimajor axis evolution

We now consider the semimajor axis evolution from equation (3).
Note from the equation that for any mass-loss, the semimajor axis
can never decrease.

In the adiabatic regime, the semimajor axis is traditionally
evolved according to equation (2). Note, however, that the equa-
tion does not follow from equation (3) if e �= 0. Yet, when the
semimajor axis is averaged over one orbital period, the eccentricity
terms vanish and equation (2) is recovered. The solution of this
equation is

aadiabatic = a0

(
1 − αt

μ0

)−1

. (18)

Therefore, an adiabatically evolving planet will, for example,
double its orbital separation if its parent 1 M� star constantly
loses mass at the rate of α = 5 × 10−9 M� yr−1 over 100 Myr.
In a different example, a 2 M� star is expected to lose at most
≈70 per cent of its initial mass. Therefore, if all this mass is lost
adiabatically, then orbiting planets can expect to increase their semi-
major axis by at most a factor of ≈3.3.

2.4.3 Adiabatic orbital angle evolution

Turning to other orbital parameters, the longitude of pericentre is
a typically secular feature of multiplanet extrasolar systems. Its
variational time-scale is often of the order of thousands of orbits.
During stellar evolution, however, equation (6) demonstrates that
the variation in a planet’s longitude of pericentre is quick (on or-
bital time-scales), and changes sign over each orbital period. To be
consistent with the adiabatic approximation, in which dω/dt ≈ 0 in
equation (7), then

�adiabatic = �0. (19)

Because d� /dt is assumed to be zero, the value of f adiabatic follows
the same evolution as f would in the two-body problem with no
mass-loss.

We can obtain an adiabat for n from equation (10) under the same
assumptions that were used to derive equations (2) and (18):

nadiabatic = n0

(
1 − αt

μ0

)2

. (20)

Thus, in the adiabatic approximation, the mean motion is a mono-
tonically decreasing function. In the same example system from
Section 2.4.2, with μ0 = 1 M�, and α = 5 × 10−9 M� yr−1, after
t = 100 Myr the planet’s mean motion would decrease by a factor
of 4. This result is expected of Kepler’s third law with a halved stel-
lar mass and a doubled semimajor axis. For 2 M� stars, the final
Keplerian period of a planet when mass-loss has ceased would be
enhanced from its initial period by a factor of at most ≈11.

2.4.4 Adiabatic evolution in space

In space, adiabatic evolution corresponds to a planet orbiting in
an outward spiral pattern. Fig. 2 displays such an orbit (for 
0 ≈
0.0016), which is not closed. After each cycle of true longitude, the
eccentricity does return to its initial osculating value. The semimajor
axis is seen to increase by as much as 10 per cent of a0 per orbit.
The increase in orbital period can be linked with the circulation
time-scale of f .

A highly eccentric planet might make close passes to the star,
close enough to be affected by tides and the stellar envelope. In
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Figure 2. The adiabatic regime. The position in space (left-hand panel) and the evolution of the true anomaly (right-hand panel) of a planet (or belt particle)
that is being pushed outward due to stellar mass-loss. The colours on the curves indicate evolution at the same points in time, and the vertical lines of true
anomaly indicate circulations of the angle. The star has an initial mass of μ0 = M� = 1 M� and is losing mass at the rate of α = 1 × 10−5 M� yr−1. The
planet begins on a highly eccentric orbit (e0 = 0.9) at a0 = 100 au, with f 0 = 0◦. Hence, 
0 = 0.0016. Note that as the planet moves outwards and its mean
motion decreases, the circulation period of the true anomaly decreases as well.

order to determine if the planet is more or less likely to suffer these
encounters from mass-loss, consider the evolution of the pericentre,
q, of the planet:

dq

dt
= −a (1 − e) (1 − cos f )

1 + e

1

μ

dμ

dt
. (21)

Equation (21) demonstrates that the pericentre monotonically in-
creases with stellar mass-loss. The left-hand panel of Fig. 2 cor-
roborates this relation. Therefore, if a planet ‘outruns’ the star’s
expanding envelope, then one can ignore the envelope’s influence
on the planet.

2.5 Regime transition

2.5.1 The breaking of adiabaticity

Equation (20) has important implications for the dynamical system,
as mean motion is inversely proportional to the Keplerian period.
Hence, as a star loses mass, and pushes a planet radially outward,
the mean motion decreases, and eventually the orbital period will
be comparable to the mass-loss time-scale (
 ∼ 1). More precisely,
dθ /dt (which is proportional to the mean motion) will eventually
become equal to (−d� /dt) (which is proportional to the mass-loss
time-scale). At this bifurcation point in the dynamics, equation (7)
demonstrates that the true anomaly becomes momentarily station-
ary. At this point, one can claim that adiabaticity is broken.

Note that in the adiabatic regime, f circulates. At and beyond
the bifurcation point, df /dt instead begins to librate. The effect of a
librating f on da/dt and de/dt is pronounced, quick and runaway.
The eccentricity and semimajor axes evolution undergo a qualita-
tive change, and the rate of increase in the latter is pronounced.
Therefore, we denote this regime as the ‘runaway’ regime. We wish
to investigate this regime transition, and do so first qualitatively
through Figs 3 and 4. These figures model a 1 M� star which is
losing mass at a relatively high rate of α = 5 × 10−5 M� yr−1

over 1.5 × 104 yr. After this amount of time, the star will have lost
75 per cent of its initial mass. These values are chosen for demon-
stration purposes, as typical 1 M� stars will lose ≈35–62 per cent

of their mass en route to becoming a white dwarf. We model more
realistic systems in Section 3.

Fig. 3 illustrates the approach to and onset of adiabaticity break-
ing, with 
0 = 0.023 (left-hand panel) and 
0 = 0.25 (right-hand
panel). In the first case, the eccentricity ceases to remain approx-
imately constant and can start to oscillate on the order of a 10th.
In the second case, where 
 quickly assumes values on the order
of unity, planets evolve in the runaway regime and may achieve
hyperbolic orbits.

Fig. 4 showcases the semimajor axis evolution for the same sys-
tems in Fig. 3. In the left-hand panel of Fig. 4, the curves of initial
eccentricity break away from the adiabat, increasing at a steeper
rate than the adiabat. In the right-hand panel, at t = 0, the sys-
tems are just beyond the adiabat and are ‘running away’ from the
star. For a constant mass-loss that turns on and off nearly instan-
taneously (such as in a supernova), planets might not ever evolve
adiabatically, and begin their life in the runaway regime. Note that
unlike eccentricity, the semimajor axis is always increasing, even
when oscillating about the adiabat. In the runaway regime, the de-
parture from the adiabat is drastic; the right-hand panel shows that
the planet may increase its semimajor axis by many factors before
achieving a hyperbolic orbit.

The resulting increase in a will cause the mean motion term in
equation (7) to decrease further. In the limiting case where dω/dt �
n, the libration amplitude will approach zero, and the true anomaly
will become nearly stationary. As a result, the cos f term in equa-
tion (4) becomes constant, and de/dt becomes linear in e, caus-
ing a positive feedback effect that is characteristic of the runaway
regime.

An orbit that is transitioning out of adiabaticity will not complete
its final orbit around the star, as the true anomaly is no longer
circulating. Fig. 5 illustrates the resulting motion in space. The
system selected is the highest eccentricity (e0 = 0.9) curve from
the left-hand panels of Figs 3 and 4 (
0 = 0.023). The system
reaches the bifurcation point at ≈1.2 × 104 yr, as one can read
from the right-hand panel. Now we explore this bifurcation point
analytically.
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Figure 3. The breaking of adiabaticity. Shown is the eccentricity evolution over 104 yr of evolution of a0 = 200 au planets (or belt particles; left-hand panel)
and a0 = 103 au planets (or belt particles; right-hand panel) orbiting a μ0 = M� = 1 M� star losing mass at a rate of α = 5 × 10−5 M� yr−1. The initial
mass-loss index for the systems in the left- and right-hand panels are respectively 
0 ≈ 0.023 and 0.25, values that are close to the transition point in the
dynamics between the adiabatic and runaway regimes. Here, f 0 = 0◦. The lines with an increasing dash length represent e0 values of 0.01, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8 and 0.9, respectively. In the right-hand panel, all planets are ejected from the system within 104 yr except the two planets with the lowest
initial eccentricity.

Figure 4. The breaking of adiabaticity for the same two systems in Fig. 3. In the left-hand panel, note how the eccentric planets oscillate about the adiabat
until reaching the runaway regime. In the right-hand panel, the planets begin at t = 0 just off of the adiabat, and quickly settle into the runaway regime.

Figure 5. The position in space (left-hand panel) and the evolution of the true anomaly (right-hand panel) of the e0 = 0.9 planet from the system in the
left-hand panels of Figs 3 and 4. At t ≈ 1.2 × 104 yr, the planet stops circulating and starts to head out of the system as the true anomaly becomes stationary.
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2.5.2 Characterizing the bifurcation point

The bifurcation point, as we defined in the last subsection, is the first
moment when dθ /dt = −d� /dt. At this moment, from equation (7),
df /dt = 0, and


bif = ebif (1 + ebif cos fbif )
2

sin fbif

(
1 − e2

bif

)3/2 . (22)

For the majority of possible values of eccentricity and true
anomaly, 
bif ≈ 0.1–1.0. There are an infinite number of triples
(
bif , ebif , f bif ) that satisfy equation (22). We cannot determine any
of these three values from the initial conditions, although one may
approximate ebif ≈ e0 from the adiabatic approximation. However,
at this point in the planet’s evolution, ebif might differ by over 0.1
from e0.

The functional form of equation (22) suggests that for a given 
bif

and a given ebif , there might be more than one value of f bif which
satisfies the equation. We now investigate this possible multiplicity
further by considering the extremities of 
bif with respect to ebif

and f bif . There are six values of f bif which satisfy d
bif/dfbif = 0,
five of which are unphysical. The one physical solution is

fbif,min = cos−1

[
1 −

√
1 + 8e2

bif

2ebif

]
, (23)

where 90◦ ≤ f bif ≤ 270◦. Let the value of 
bif at f bif = f bif,min be
denoted by 
bif,fmin. Then, for a given 
bif and a given ebif , the
number of values of f bif which satisfy equation (22) are

0 values of fbif if 
bif < 
bif,fmin, (24)

1 value of fbif if 
bif = 
bif,fmin, (25)

2 values of fbif if 
bif > 
bif,fmin. (26)

The maximum value of 
bif,min (obtained in the limit ebif →
1) is 4/(3

√
3). Therefore, for any given 
bif > 4/(3

√
3) ≈ 0.77,

there are two possible values of f bif which satisfy equation (22).
Fig. 6 demonstrates equations (24)–(26) graphically by plotting

Figure 6. Values of (
bif , ebif , f bif ) at the bifurcation point, where lines
with an increasing dash length represent ebif values of 0.01, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. The corresponding colour dots
represent the value of 
bif,fmin for a given ebif , when just one value of f bif

satisfies equation (22). Adiabatic systems approaching the bifurcation point
would be travelling upwards on this plot while circulating nearly parallel to
the x-axis.


bif versus f bif for 10 values of ebif (0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and 0.9). Large dots mark where 
bif = 
bif,fmin. As
adiabatic systems increase 
 and approach the bifurcation point,
their evolution can be imagined as moving upwards in this plot
while circulating almost parallelly to the x-axis. Eventually they
will reach the bifurcation point, preferentially at 
bif,min.

Note from equation (22) that ebif → 0 implies 
bif → 0, sug-
gesting that planets with initially circular orbits can never be in the
adiabatic regime. However, this is not true. If e0 = 0, then from
equation (17), eadiabatic = 
0 sin f . Inserting this expression into
equation (7) yields

df

dt

∣∣∣
t=0,e0=0

= n

[(
1 + 1

2 
0 sin 2f
)2(

1 − 
2
0 sin2 f

)3/2 − 1

]
> 0 (27)

for any non-zero value of f (f attains a positive value immediately
even if f 0 = 0). After t = 0, df /dt will then continue to increase until
the bifurcation point is reached. Therefore, initially circular plan-
ets may easily evolve adiabatically, which corroborates numerical
simulations.

Now we consider d
bif /debif = 0. There are three solutions, two
of which are physical:

ebif,ext1 = 1

4

(
−3 cos fbif +

√
−7

2
+ 9

2
cos (2fbif )

)
, (28)

ebif,ext2 = 1

4

(
−3 cos fbif −

√
−7

2
+ 9

2
cos (2fbif )

)
, (29)

where f crit ≤ f bif ≤ (360◦ − f crit), such that

fcrit = 180◦ − 1

2
cos−1

(
7

9

)
≈ 160.◦53. (30)

This critical true anomaly value will be important for describing
motion in the runaway regime because it determines where a qual-
itative change in the evolution occurs. For a given 
bif and a given
f bif , the numbers of values of ebif that satisfy equation (22) are

1 value of ebif if 0◦ ≤ fbif < fcrit, (31)

3 values of ebif if fcrit < fbif < 180◦, (32)

∞ values of ebif if fbif = fcrit. (33)

The limiting values of 
bif at ebif = ebif,ext1 and ebif = ebif,ext2 are
2/3 and 4/(3

√
3).

We can illustrate the multiplicity suggested by equations (31)–
(33) with Fig. 7. Plotted in Fig. 7 are six curves corresponding to f =
1◦, 5◦, 10◦ (short-dashed blue curves) and f = 179.◦0, 179.◦5, 179.◦9
(long-dashed red curves). We display these curves because they
approximate the e − 
 evolution tracks beyond the bifurcation point
in the f → 0◦ and f → 180◦ cases. For these two values of f , df /dt ≈
0 (from equation 7), and hence f remains constant as a function of
time. In this case, a system will move along one of these tracks.
Because 
 is always increasing, for the blue short-dashed curves,
this system will increase its eccentricity until ejection. However, for
the red long-dashed curves, the planet’s eccentricity might decrease
until reaching a critical point, when the increase in 
 will break
the constant f approximation and force the system off the track.
The critical points (circles; peaks) along these tracks that appear
between 1/2 < e ≤ 1/

√
2, are given by


bif,crit1 =
[
−6 cos fbif + ε

24
√

3 sin fbif

] √
5 − 3 cos (2fbif ) − ε cos fbif, (34)
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Figure 7. Values of (
bif , ebif , f bif ) at the bifurcation point, where the blue-
short dashed lines, starting from the top down, represent f bif = 1◦, 5◦, 10◦,
and the red long-dashed lines, starting from the bottom up, represent f bif =
179.◦0, 179.◦5, 179.◦9. The peak and trough critical points for the red long-
dashed curves are marked with red circles and triangles, respectively. The
black curves are given by equations (34) and (35). The blue and red curves,
separated by f crit (equation 30), exhibit qualitatively different behaviours.
The blue short-dashed curves and the rising portions of the red long-dashed
curves represent evolutionary tracks beyond the bifurcation point, demon-
strating that for f crit < f < 360◦ − f crit, the planet’s eccentricity will expe-
rience an initial decrease beyond the bifurcation point.

and for those critical points (triangles; troughs) that appear between
1/

√
2 ≤ e < 1:


bif,crit2 =
[
−6 cos fbif + ε

24
√

3 sin fbif

] (
8 − 6 cos2 fbif + ε cos fbif

)2

(5 − 3 cos (2fbif ) + ε cos fbif )
3/2 ,

(35)

where ε ≡ √
18 cos (2f ) − 14. The two critical curves are shown

in Fig. 7 as thin black lines. The limiting values represented by
the three triangles, which are not distinguishable by eye from one
another in the plot, occur at ebif < 1.

Linking the orbital parameters at the bifurcation point with the
initial system orbital parameters is difficult because although the
bifurcation point is well defined, the adiabatic approximations begin
to break down before the bifurcation point is reached (see, e.g.
Fig. 3). Nevertheless, we can analytically estimate the semimajor
axis at the bifurcation point by using the semimajor axis adiabat.
Doing so gives

abif

a0
= 


−(1/3)
0

[
e

1/3
bif (1 + ebif cos fbif )

2/3(
1 − e2

bif

)1/2
(sin fbif )

1/3

]

∝ M1/2
� a

−(1/2)
0 α−(1/3). (36)

Equation (36) contains qualitative physics useful for understanding
when the system reaches the bifurcation point. The dependence on
the initial stellar mass, initial semimajor axis and the mass-loss rate
determines how prone a star is to reaching the bifurcation point and
ejecting its planet. For two planets in separate systems with the same
a0, the parent star whose physical parameters yield a smaller value
of abif is more likely to cause ejection. Also, wide-orbit planets are
more prone to be ejected than smaller orbit planets. Unfortunately,
the term in square brackets is unknown and cannot be bound without
some assumptions on ebif and f bif . To be consistent with using the
adiabat, one can assume ebif = e0. However, by the time the system
has reached the bifurcation point, the eccentricity could have already

varied away from its initial value by at least a 10th. The value of
f bif is the cause of greater uncertainty.

2.6 ‘Runaway’ regime evolution

2.6.1 Runaway true anomaly evolution

The unknown value of f bif largely determines how the planet will
evolve past the bifurcation point. If the mass-loss is great and sudden
enough, then the planet will bypass the bifurcation point altogether
and immediately start evolving in the runaway regime. In this case,
the planet’s f 0 value is crucial to its evolution. The divided phase-
space structure of Fig. 7 correctly suggests that systems can behave
quantitatively differently depending on their true anomalies.

Consider Figs 8 and 9, which illustrate the eccentricity evolution
as a function of initial true anomaly for 
0 = 0.089 (approaching the
bifurcation point) and 
 = 7.96 (runaway regime). This dependence
is more complex around the bifurcation point 
 ∼ 0.1–1 than after it
(
 > 
bif ). Note importantly that the divided phase-space structure
in Fig. 7 manifests itself strongly in Fig. 9 (at f crit in the runaway
regime, highlighted by the dotted blue box, when every planet’s
eccentricity must experience an initial decrease), but not in Fig. 8
(before the bifurcation point). Additionally, in Fig. 8, for at least
a third of all the possible initial f 0 values, the first planet ejected
has a e0 value in between the extremes sampled of 0.01 and 0.9.
Contrastingly, in Fig. 9, in every instance the first planet ejected has
either e0 = 0.01 or 0.9. Further, the eccentricity evolution is nearly
symmetric about f = 180◦ in the runaway regime, a tendency not
exhibited in Fig. 8. This helps us to demonstrate how complex the
evolution can be when the system is neither robustly in the adiabatic
nor in the runaway regime. Planets that have already begun their
post-main-sequence life in the strongly runaway regime (
 � 1;
Fig. 9) show a more predictable behaviour.

Fortunately, in some cases we can analytically approximate the
evolution of orbital parameters in this regime. If a planet begins to
evolve at t = 0 in a 
 � 1 system with a value of f that is close
to either 0◦ or 180◦, then f is guaranteed to librate with a small
enough amplitude so that f may be treated as a constant. Figs 7
and 9 suggest that the resulting behaviour in each of the two cases
will differ qualitatively. The latter figure illustrates that for f =
180◦, immediately after circularization, the eccentricity evolution
starts increasing and continues to do so up until ejection. Before
quantifying this behaviour analytically, we attempt to explain the
physical mechanism at work.

At f ≈ 0◦, e will increase until the planet is ejected. There is
no alternative evolutionary track. At f ≈ 180◦, the eccentricity will
decrease until e → 0. In this limit, |d� /dt| becomes large, forcing
df /dt �= 0. The true anomaly will then quickly sample other values.
At all other values except 0◦, df /dt �= 0. When f eventually samples
0◦, it becomes stuck on that evolutionary track.

2.6.2 Runaway eccentricity evolution

In the runaway regime, when f = 0◦ or 180◦, equations (3) and (4)
may be solved directly and analytically. The eccentricity evolution
is then given by

erunaway|f =0◦ = e0

(
1 − αt

μ0

)−1

+
(μ0

αt
− 1

)−1

= e0
μ0

μ
+

(
μ0

μ
− 1

)
(37)
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Figure 8. How true anomaly affects eccentricity evolution on the approach to the runaway regime. Shown is the eccentricity of a planet at a0 = 500 au over
1.5 × 104 yr orbiting the same star (μ0 = 1 M� and α = 5 × 10−5 M� yr−1, so 
0 ≈ 0.089) as in the left-hand panels of Figs 3 and 4, as a function of f 0. The
lines with increasing dash length represent e0 values of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. Note the dramatic sensitivity the initial
true anomaly may have on the eccentricity evolution, and that for f 0 = 120◦–240◦, the particle or planet which is ejected first is one with an initial eccentricity
that is neither the highest nor the lowest sampled. The evolution is not symmetric about f 0 = 180◦, and a few of the initially eccentric planets will become
circularized.

Figure 9. How true anomaly affects eccentricity evolution in the runaway regime. Shown is the eccentricity of a planet at a0 = 104 au for the situation in
Fig. 8. Here, however, 
0 ≈ 7.96 and the eccentricity evolution is nearly symmetric about f 0 = 180◦ (as hinted at by the f 0 = 170◦ and 190◦ cases). Circular
orbits are approached at f 0 = 180◦. The blue dashed box highlights the case f 0 = f crit. For f crit < f 0 < 360◦ − f crit, every planet, regardless of e0, is predicted
to experience an initial eccentricity decrease. The eccentricity will later increase if the mass-loss continues for a long enough time (which is not the case, e.g.
for f 0 = 180◦ and e0 = 0.8).

and

erunaway|f =180◦ = e0

(
1 − αt

μ0

)−1

−
(μ0

αt
− 1

)−1

= e0
μ0

μ
−

(
μ0

μ
− 1

)
. (38)

In the f 0 = 0◦ case, the eccentricity will increase until the planet
is ejected; in the f 0 = 180◦ case, the eccentricity will decrease
until the planet achieves a circular orbit. Hence, the amount of mass

remaining in a star at the moment of ejection, μout, and at circulation,
μcirc, are

μout

μ0
= 1 + e0

2
, (39)

μcirc

μ0
= 1 − e0. (40)

Equation (39) demonstrates that for 
 >
bif and f 0 ≈ 0◦, a planet
will be ejected before half of the star’s mass is lost. Also, planets
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with larger initial eccentricities would be the first to be ejected.
Equation (40) demonstrates that a planet of any eccentricity may be
circularized, and that nearly initially circular planets are the most
likely to do so first. These equations may also be expressed as tout =
μ0(1 − e0)/(2α) and tcirc = μ0e0/α.

After circularization, the planet’s true anomaly quickly becomes
0◦, as described in the last subsection. Then, the eccentricity evolves
according to a ‘post-circular’ prescription:

epost-circular = t − μ0e0
α

μ0
α

− t
= μ0

μ
(1 − e0) − 1. (41)

The total time taken for a planet to circularize and then be ejected
from a system is ttot = μ0(1 + e0)/(2α). After this time, the amount
of material the star has depleted is

μtot

μ0
= 1 − e0

2
. (42)

Any planet that circularizes before becoming ejected therefore must
have a parent star that loses at least half of its mass. Additionally, in
order for the most eccentric planets to be ejected, they require the
star to lose all of its mass. The implications are that no belt of objects
that are uniformly distributed in both true anomaly and eccentricity
can all be ejected due to mass-loss: Regardless of the value of 
,
the highest eccentricity bodies at f ≈ 180◦ must survive.

2.6.3 Runaway semimajor axis evolution

The semimajor axis evolution in the f 0 = 0◦ runaway regime and
that in the f = 180◦ runaway regime are

arunaway|f =0◦ = a0 (1 − e0)
1 − αt

μ0

(1 − e0) − 2αt
μ0

= a0 (1 − e0)

2 − μ0
μ

(1 + e0)
(43)

and

arunaway|f =180◦ = a0 (1 + e0)
1 − αt

μ0

(1 + e0) − 2αt
μ0

= a0 (1 + e0)

2 − μ0
μ

(1 − e0)
, (44)

respectively. As one might expect, for initially circular orbits in the
runaway regime, the semimajor axis evolution is the same for f 0 = 0◦

and 180◦. Also, in the circular limit, we can compare the semimajor
axis evolution with what it would have been in the adiabatic limit.
For a given a0, arunaway/aadiabatic = (2μ/μ0 − 1)−1, which holds until
μ = μ0/2, the moment the planet is ejected.

Similarly, using equations (39) and (40), one can show that aout =
∞ and acirc = a0(1 + e0). Therefore, the circularization semimajor
axis is at most twice the initial semimajor axis. When a planet is
circularized, it is done so only momentarily; it can only retain such
an orbit if the mass-loss is suddenly stopped at that moment. For any
planet that has been circularized, one can show that the semimajor
axis will subsequently evolve as

apost-circular = arunaway|f =180◦ . (45)

Therefore, the semimajor axis evolves through the e = 0 transition
smoothly, without changing its functional form.

We test the goodness of these analytical approximations by con-
sidering a close-in planet (at a0 = 2 au) in the robustly runaway
regime of a supernova. Consider a 10 M� progenitor that expels
α = 0.5 M� h−1 of mass past the orbit the planet. Thus, 
 ≈ 62.4.
When f 0 = 0◦ and 180◦, equations (37), (38) and (41) replicate
the eccentricity evolution. Therefore, we set f 0 = 20◦ in Fig. 10 to
show the extent of the deviation from the analytic approximation.
In the figure, the thin black dashed lines represent the analytic ap-
proximation, which mimics the true eccentricity evolution to within
10 per cent for all values of e0. As predicted by equation (39),
all planets are ejected before the star loses half of its mass (at
10 h). In Fig. 11, we set f 0 = 178◦, just 2◦ off an exact match,
because such a deviation from the analytics is more drastic than for
deviations of f 0 = 0◦. As f 0 deviates from 180◦, the eccentricity
turns up sooner, and becomes less circularized. The approximation
will mimic the semimajor axis evolution until the point at which
the planet would have been circularized had f 0 = 180◦. Note that
these circularization instances occur when a is less than twice its
initial value, in conformity with acirc = a0(1 + e0). The dots in the
left-hand panel indicate when this circularization would have taken
place, and show that the semimajor axis evolution is unaffected. As
predicted by equation (42), no planets are ejected until at least half

Figure 10. Analytic approximations (thick black nearly solid foreground lines, from equations 37 and 43) to the e and a evolution from the numerical
simulations (background-coloured dashed curves) in a robustly runaway regime for f 0 = 20◦. The planet at a0 = 2 au is experiencing supernova-like mass-loss
of α = 0.5 M� h−1 from a μ0 = 10 M� star (
0 ≈ 62.4). The lines with increasing dash length represent e0 values of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9, respectively. The analytical approximation is best for e0 = 0.01, and reproduces all the e0 curves from the full numerical integrations to within 10 per
cent. All the planets are ejected before half of the star’s mass is lost (see equation 39).
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Figure 11. Analytic approximations (thin black nearly solid foreground lines, from equations 38, 41 and 44) to the e and a evolution from the numerical
simulations (background-coloured dashed curves) in the same runaway regime as in Fig. 10, but for f 0 = 178◦. In the limiting case of f 0 = 180◦, the eccentricity
decreases until reaching zero. The dots in the left-hand panel indicate when this would have occurred (at a0[1 + e0]). None of the planets is ejected until at
least half of the star’s mass is lost, and the highest eccentricity planets are not ejected until almost all of the star’s mass is lost (see equation 42).

of the star’s mass is lost, and the highest eccentricity planets are
ejected only in the limit of the star losing all of its mass (at 20 h).

2.7 Impulsive regime evolution

One may treat the entirety of stellar mass-loss under the impulse
approximation, when the mass is lost instantaneously. This situation
corresponds to 
0 → ∞, an asymptotic runaway regime. Let the
subscripts ‘i’ and ‘f’ represent the initial and final values, E the
(unconserved) specific energy of the system, and r and v the position
and velocity of the planet. Then

Ei = 1

2
v2

i − Gμi

ri
= −Gμi

2ao
(46)

and

Ef = 1

2
v2

f − Gμf

rf
> 0, (47)

assuming that the planet is ejected.
Now assume μf = βμi, where 0 < β ≤ 1. We can obtain a

condition for ejection by eliminating vi = vf from the equations
and setting ri = rf . Doing so gives

β >
1 + e2

0 + 2e0 cos f0

2 (1 + e0 cos f0)
. (48)

We illustrate the phase space suggested by equation (48) in Fig. 12.
Below each curve of a given e0, the planet is ejected. Note how the
region around f 0 = 180◦ highlights a stable region, one for which the
highest eccentricity planets are the most protected. This situation
is reflected in the finite 
 runaway regime, and demonstrated in
Figs 9 and 11. Although the highest eccentricity planets are the
most protected at f 0 ≈ 180◦ (apocentre), they are the least protected
at f 0 ≈ 0◦ (pericentre). The tendency for nearly circular planets to
be ejected is independent of true anomaly.

One curious connection between the impulse approximation and
the bifurcation point is that the two inflection points of equation (48)
satisfy equation (23). The value of β at these points, β infl, is given
by

βinfl = 1

8

(
5 −

√
1 + 8e2

0

)
. (49)

Therefore, 1/4 ≤ β infl ≤ 1/2. These points are marked as dots in
Fig. 12, and are connected by the analytic curve from equations (23)
and (49).

Figure 12. Ejection prospects in the impulse approximation (
0 → ∞).
Plotted is the fraction of stellar mass retained (≡ β) versus f 0 for 10 curves
of increasing dash length for e0 = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9). The planet remains bound in the regions above the curves and
is ejected in the regions below the curves. The dots refer to the inflection
points of the curves, given by equation (49) and which satisfy equation (23).
Note how highly eccentric planets are especially protected from ejection
near apocentre (f ≈ 180◦), but are prone to ejection near pericentre (f ≈ 0◦).

Returning to equation (48), note that in the limits of f → 0◦ and
f → 180◦, one recovers equations (39) and (42). Additionally, if the
inequality in equation (48) is solved for cos f and then bounded by
its maximum value, then ejection is impossible if

β >
1 + e0

2
. (50)

This condition demonstrates that for an initially circular planet, at
least half of the star’s mass must be lost in order for there to be
a possibility of ejection. For a highly eccentric planet, however,
just a slight mass-loss might be enough to eject it. Whether or not
a planet’s high eccentricity serves as a protection mechanism is
dependent on its f value, which relates how close the planet is to
the pericentre or the apocentre.

As an example, consider a circular ring of massless particles uni-
formly distributed in true anomaly at any separation from a star of
any non-zero mass. If over half of the star’s mass is lost instan-
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taneously, then the entire particle ring will be ejected. Otherwise,
all the particles will remain bound. Now consider an eccentric ring
where all particles have e = 0.9. If the parent star instantaneously
loses 60 per cent of its mass, then only ≈11 per cent of the ring will
remain bound to the star.

3 EX C I TAT I O N A N D E J E C T I O N
IN REALISTIC SYSTEMS

3.1 Overview

We can now apply the theory developed in Section 2 to realistic
systems. The field of stellar evolution is extensive and touches on
several areas of astrophysics. We cannot hope to cover the entire
phase space in detail in one paper. However, by focusing on a single
phase of stellar evolution and considering constant mass-loss in
most cases, we will attempt to provide preliminary statistics and an
order-of-magnitude analysis for the entire progenitor stellar mass
range up to 150 M�. We perform detailed non-linear simulations
only for the 2 M� ≤ μ0 � 7 M� regime, whose stellar evolutionary
tracks lend themselves well to this study.

The evolution of stars is almost entirely determined by its ZAMS
(zero-age main sequence) metallicity content and mass (Woosley,
Heger & Weaver 2002). These two factors determine how mass is
lost later in life through winds. Because this correlation is so poorly
known, mass-loss prescriptions are often treated as a third inde-
pendent parameter for tracing stellar evolution. To avoid detailed
modelling involving integration of the stellar evolution differential
equations, we rely heavily on the empirical algebraic fits of Hurley,
Pols & Tout (2000) to model the evolutionary tracks of stars of most
mass, metallicity and mass-loss rate properties. These evolutionary
tracks demonstrate that mass-loss (i) can occur in multiple stellar
phases, (ii) is often prominent in just one stellar phase, and (iii) is
always monotonic but typically non-linear in any given phase. All
the stellar evolutionary phase names used here are defined in their
seminal work.

We use the mass-loss prescriptions provided in Hurley et al.
(2000), which include the Reimers law on the red giant branch
(RGB; Kudritzki & Reimers 1978), a steady superwind asymptotic
giant branch prescription (Vassiliadis & Wood 1993), a high-mass-
loss prescription (Nieuwenhuijzen & de Jager 1990), a Wolf–Rayet-
like mass-loss prescription (Hamann, Koesterke & Wessolowski
1995) and a luminous blue variable law (Humphreys & Davidson
1994). The Reimers prescription is in particular widely used for
giant branch evolution, and beyond:

dM�

dt
= η

(
4 × 10−13

) L�(t)R�(t)

M�

M�
yr

, (51)

where L� and R� are the stellar luminosity and radius and η is a
dimensionless coefficient. We adopt the ‘typical’ value for η of 0.5
(Hurley et al. 2000; Schröder & Cuntz 2005).

We divide the stellar mass phase space into five regimes, which
are approximately separated at 1, 2, 7 and 20 M�, based on stellar
evolutionary properties.

3.2 Numerics and checks

Although certain regimes of evolution can be modelled well by
algebraic formulas, the lack of a complete closed-form analytical
solution to equations (3)–(7) suggests that numerical integrations
are needed to model the evolution of the full two-body problem

with mass-loss. We evolve planetary orbits in this section by using
numerical integrations.

In these integrations, one may incorporate mass-loss (i) as a
separate differential equation, (ii) by explicitly removing mass from
the primary according to a given prescription, or, alternatively (iii)
by adding mass to the secondary (Debes & Sigurdsson 2002). As a
check on our results, we have reproduced each curve in the breaking
of adiabaticity regime in the left-hand panel of Fig. 3 (
0 ≈ 0.023)
with both (i) integration of the orbital elements (equations 3–7)
plus integration of a separate mass-loss differential equation in
the MATHEMATICA software program, for 13 digits of accuracy and
precision and with a working precision equal to machine precision,
and (ii) integration of the Cartesian equations of motion with the
hybrid integrator of the N-body code, Mercury (Chambers 1999),
with a maximum time-step of 1 yr and with mass explicitly being
removed from the primary at each time-step.

However, we warn future investigators that in systems that ul-
timately do not obey the adiabatic approximation, the dynamical
evolution is sensitive to the evolution of f . Therefore, in numeri-
cal integrations, particularly for non-linear mass-loss prescriptions,
how one discretizes the continuous mass-loss process can qualita-
tively affect the resulting evolution. A discretation of mass-loss is
mimicked in reality by instantaneous bursts of primary mass lost
beyond the orbit of the secondary. Therefore, a detailed study of an
individual system with a given mass-loss prescription will require a
numerical integration where the time between discrete decreases in
the primary mass should be less than the (largely unknown) time-
span of discontinuous patterns in the mass-loss modelled. Here,
we just seek to demonstrate the instability in the general two-body
mass-loss problem and achieve representative statistics on ensem-
bles of systems. In the 2 M� ≤ μ0 � 7 M� regime, which features
non-linear mass-loss, we model planets with 50 au ≤ a0 ≤ 105 au.
Therefore, we set a maximum possible time-span of 1 yr (the same
value used to reproduce Fig. 3) between mass lost; in order to
achieve mass-loss on this scale, we interpolate linearly between the
outputs from the largely non-linear stellar evolutionary track out-
puts from Hurley et al. (2000). We then run the simulations with
Mercury’s (Chambers 1999) hybrid integrator.

3.3 The stellar mass spectrum

3.3.1 The μ0 < 1 M� regime

Subsolar-mass stars experience quiescent deaths, some of which
are theorized to last longer than the age of the Universe. However,
stellar tracks computed from the Hurley et al. (2000) code indicate
that the most massive members of this group (μ0 > 0.7 M�) may
pass through multiple stages of evolution, and eject up to half of
their initial mass in the RGB stage. Low-metallicity μ0 = 0.8 and
0.9 M� stars do so on the RGB over ∼100–200 Myr. If this mass is
lost uniformly, then 
0 ≈ 0.011, meaning that the system is likely to
start losing its adiabatic properties. Simulations of constant mass-
loss confirm that the change in the eccentricity of an Oort Cloud at
a0 = 105 au will vary from ∼0.01 (for particles with e0 = 0.90) to
∼0.1 (for particles with e0 = 0.01). The mass-loss is not strong and
quick enough to eject the particles, and objects with semimajor axis
less than ∼104 au (which would yield 
 ≤ 0.00036) are robustly
in the adiabatic regime. This regime of the motion might change,
however, due to non-linear modelling. This might reveal short bursts
of mass-loss causing 
 to increase sharply over the corresponding
burst time-scale.
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3.3.2 The 1 ≤ μ0 < 2 M� regime

Roughly half of all known planet-hosting stars, including the Sun,
lie in this progenitor mass regime, motivating detailed analyses of
these systems. We defer such analyses to future studies because of
the complex multiphasic evolutionary path these stars are prone to
follow.

As an example, assuming η = 0.5, the Sun will eventually lose
a total of 48 per cent of its original mass: 24 per cent during RGB,
4 per cent during core-He burning, 13 per cent during early asymp-
totic giant branch (EAGB), and 7 per cent during thermally pulsing
asymptotic giant branch (TPAGB). All these phases of mass-loss
are non-linear and occur on different time-scales. If instead η =
0.3, then the mass-loss percentages will change drastically: 13
per cent during RGB, 2 per cent during core-He burning, 4 per
cent during EAGB, and 28 per cent during TPAGB. Other exam-
ples show that slightly increasing the progenitor mass from 1.1
to 1.2 M� can have a similarly large effect on what mass is lost
when.

We can, however, provide some rough estimates of planetary
evolution through representative numerical simulations assuming
constant mass-loss over one phase. Stars in this mass regime may
lose over 60 per cent of their original mass, most of which either in
RGB (particularly for values of η ≥ 0.8) or TPAGB (for lower η and
μ0 > 1.3 M�). The duration of RGB phases for these masses are
∼100 Myr, and will yield only minor eccentricity increases at a =
105 similar to those from subsolar masses. However, the duration
of TPAGB phases in this mass regime is ∼0.1–1.0 Myr. Constant
mass-loss over this period of time for μ0 = 1.0–1.3 M� can cause
up to 20 per cent of an Oort Cloud at 105 au (
 ≈ 3.0) to be ejected,
and raise the eccentricity of an initially circular planet at 104 au
(
 ≈ 0.096) to ≈0.25. We obtained these figures by sampling eight
evenly spaced values of f 0 for each of the following 10 values of
e0: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. This effect is
pronounced with progenitor masses approaching 2 M� and losing
up to 70 per cent of their initial mass.

Therefore, Oort Clouds are in jeopardy of partially escaping or be-
ing moderately disrupted in systems with similar progenitor masses
to the Sun. The comets cannot, however, drift into the inner regions
of the system (see equation 21). The widest orbit planets at ∼104 au
may experience a moderate eccentricity change of a few tenths, and
might be ejected depending on the non-linear character of the mass-
loss. Future multiphasic non-linear modelling will better quantify
and constrain these effects.

3.3.3 The 2 ≤ μ0 � 7 M� regime

This mass regime is well suited for this study because here, ∼70–
100 per cent of a star’s mass-loss occurs in a single phase, the
TPAGB, regardless of the values of η, [Fe/H], or μ0. Therefore, by
modelling the non-linear mass-loss in this one phase, we can make
definitive conclusions about this region of phase space. Addition-
ally, the duration of this phase is short, typically under 2 Myr, and
therefore feasible for numerical integration of planets at distances
of just a few tens of au.

We consider two progenitor star metallicities, a ‘low’ metallicity
([Fe/H] = 0.0001) and a solar metallicity ([Fe/H] = [Fe/H]� =
0.02), both with η = 0.5. In the low-metallicity case, we utilize
nine TPAGB evolutionary tracks in the range of μ0 = 2–6 M�, in
increments of 0.5 M�. In the solar metallicity case, we utilize 13
TPAGB evolutionary tracks in the range of μ0 = 2–8 M�, in in-
crements of 0.5 M�. Beyond these upper mass limits, a star would
undergo the supernova stage for the stated metallicities. The evo-
lutionary tracks are plotted in Fig. 13. Note that the initial masses
indicated on the plots do not exactly represent μ0; the small (<10
per cent) mass-loss that occurred between the main sequence and
the start of the TPAGB, typically in the core-He burning and EAGB
phases, has already been subtracted. For all of the tracks except
the low-metallicity μ0 = 2 M� track, most of the mass-loss occurs
within a short 104 yr scale indicated by the sharp downturn in the
curves. However, note that between the start of the TPAGB phase
to this intense mass-loss period, over a period of ≈0.7–1.5 Myr,
the stars typically lose ∼0.5 M� worth of mass. After the intense
mass-loss burst, effectively no more mass is lost from the system.
Integrations for the two lowest mass tracks for [Fe/H] = [Fe/H]� =
0.02 were begun 5 × 105 yr after the start of the TPAGB in order
to include the sharp mass-loss feature and consistently integrate all
systems over the same period of time.

For each of the 22 evolutionary tracks, we modelled 1200 planets
as test particles and integrated the systems for 1.6 Myr, longer than
the duration of the TPAGB phase for nearly all of the stellar tracks.
The planets were all given randomly chosen values of the initial
mean anomaly, and were split into eight groups of 150 each. Each
group of planets was assigned an a0 value of 50, 100, 500, 1 × 103,
5 × 103, 1 × 104, 5 × 104, and 1 × 105 au. Each group of 150
planets was split into three subgroups of 50, each of which was
assigned an e0 value of 0.01, 0.5 and 0.9.

We compute the percentage of each group of 150 simulations
of a given semimajor axis and initial progenitor mass that become

Figure 13. Thermally pulsing asymptotic giant branch (TPAGB) evolution for stars of low- and solar-metallicities. Each colour represents a different
evolutionary track. Initial TPAGB mass can be read off from the Y-axis. The four highest mass grey curves for solar metallicities were not computed for the
low-metallicity case because those stars would have undergone the supernova stage.
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Figure 14. Planetary ejection prospects for massive stars at 2–8 M�. Each data point is averaged over the 150 randomly chosen mean anomaly values and
three selected e0 values for each a0. The black filled-circle curves for 50 au are hidden behind the 100 au curves. The a0 = 50 and 100 au systems, which are
in the adiabatic regime, remain bound. The a0 ≥ 103 au systems, in the runaway regime, become largely unstable.

unstable. We define instability by whether or not the planetary ec-
centricity reaches unity. Fig. 14 reports the results. Because of the
non-linear nature of the mass-loss, here our mass-loss index from
equation (15) breaks down. However, we can say roughly that the
duration of the greatest mass-loss is comparable to a planet’s pe-
riod at 500 au (the blue curves with diamonds). At approximately
this semimajor axis we expect a planet to be in the transition re-
gion between adiabaticity and runaway. These curves on the plot
qualitatively corroborate this expectation: orbits tighter than 500 au
are stable and adiabatic, orbits wider than 500 au are unstable and
runaway, and orbits at 500 au are a bit of both. Most of the planets
in the widest orbits become unstable, but they cannot all become
unstable for a large enough sample of randomly chosen values of f 0

because some of these values will be close to 180◦. As demonstrated
by Fig. 11, in the high (e.g. 0.9) e0 case, planets with f 0 close to
180◦ will be ejected only if the parent star loses over ∼95 per cent
of its mass, a largely unrealistic scenario for any progenitor mass.
Further, for the simulations in Fig. 14, note that beyond 1000 au
– in the robustly runaway regime – there is little correlation with
instability percentage and a0. Equations (37), (38) and (41) help
us to show why: at least for values of f 0 close to 0◦ and 180◦, the
eccentricity evolution is independent of a0.

For planets that remain bound, we consider the extent of their
eccentricity excitation. Fig. 15 plots the eccentricity range experi-
enced by bound planets averaged over all simulations with the same
values of μ0, a0 and e0 but with different values of f 0. The panels
show that the eccentricity of the remaining bound planets for a0 ≥
500 au is significantly excited (by several tenths). The eccentricity
of planets at a0 = 50 and 100 au on average can vary by a few
hundredths, and 0.1, respectively. If a symbol in the legend does not
appear on the corresponding plot, then no planets at that semimajor
axis remains bound. The top two panels (e0 = 0.01) exhibit a dearth
of these symbols, a result one might expect from Fig. 12. If that
figure is qualitatively representative of the situation here, amidst
strong non-linear mass-loss, then there is no value of f 0 that affords
the lowest e0 planets protection. The horizontal lines on the middle
two and bottom two panels of Fig. 15 display the value of 1 − e0;
symbols above these lines indicate that the corresponding systems
on average experience a net eccentricity decrease. These systems
are more likely to be left with a planet whose orbit is less eccentric
than e0 when mass-loss is terminated.

3.3.4 The 7 � μ0 � 20 M� regime

Generally, solar-metallicity stars with 8 ≤ μ0 ≤ 20 M� are thought
to undergo supernova and produce a neutron star. However, these
bounds are approximate. Additionally, lower metallicity stars can
begin neutron star formation and black hole formation at different
values; the representative ones might be 6 and 18 M�, respectively
(Heger et al. 2003; Eldridge & Tout 2004; Belczynski et al. 2010).
These stars may eject ∼50–95 per cent of their initial mass, most
of which is in the supernova (Smartt et al. 2009). Additionally, the
minimum and maximum possible masses of the remnant neutron
stars are constrained by physical principles. Typically accepted val-
ues for the minimum and maximum are ≈1 M� (Strobel & Weigel
2001) and 3 M� (Kalogera & Baym 1996); Clark et al. (2002)
presents observational evidence for the upper bound. Therefore,
this mass regime of stellar evolution is relatively well constrained,
and due to the nearly instantaneous mass-loss, is very well suited
for this study.

The sudden nature of the formation of a supernova, combined
with the great extent of mass lost compared to μ0, places any orbiting
planet immediately in the runaway regime. Therefore, we seek to
determine what planets, if any, can survive a supernova. We hence
choose parameters that favour survival, to see if this situation is
possible. First, we select the minimum possible a0. Evolutionary
tracks from Hurley et al. (2000) indicate that the minimum extent of
the pre-supernova stellar envelope (including pre-supernova mass-
loss) is about ∼2 au, so we choose a0 = 2 au.

If the mass ejected from a supernova is considered to be isotropic,
then this mass will collide with any orbiting bodies. This collision
is likely to destroy smaller bodies. Large and/or massive planets,
however, may survive. Those planets that do survive might accrete
some of the mass from the ejecta. Although doing so will cause a to
decrease, this contribution, even at 2 au, is negligible compared to
the a increase from all the other ejecta that are being blown past the
planet’s orbit. We are concerned with the amount of time the mass
takes to pass the diameter of the planet. We can model mass-loss
in these systems by assuming an ejection velocity and a planetary
diameter.

Observations help us to constrain the velocity of this ejecta. Some
diverse examples for different types of supernovae include the fol-
lowing.
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Figure 15. Eccentricity excitation of planets which remain bound during massive star evolution, for 2–8 M�. The left- and right-hand panels are for low
metallicity and solar metallicity, respectively. The top, middle and bottom panels are for e0 = 0.01, 0.5 and e = 0.9, respectively. Each data point is averaged
over the 50 values of the mean anomaly sampled for the given μ0, a0 and e0 values. If no symbol is displayed, then none of the corresponding systems was
stable. The horizontal lines indicate values of 1 − e0; symbols above this line experience a net eccentricity decrease.

(i) Fesen et al. (2007) report Hubble Space Telescope observa-
tions that indicate that the 120 yr average expansion velocity of
SN 1885 is 1.24 × 104 ± 1.4 × 103 km s−1.

(ii) Mazzali et al. (2010) model spectra of SN 2007gr, and find
that the inner 1 M� of material is being ejected at a velocity of
4.5 × 103 km s−1.

(iii) Szalai et al. (2011) find that the maximum velocity of su-
pernova ejecta of 2004dj during the nebular phase is approximately
3.25 × 103 km s−1.

One theoretical investigation claims that ejecta velocity can reach
2 × 104 to 3 × 104 km s−1 (Woosley, Langer & Weaver 1993), and
another demonstrates that (surface) piston speeds of 1 × 104–2 ×
104 km s−1 ‘covers the extremes from a sudden (energy deposition
over 1 s) to a slow-developing explosion (energy deposition over
∼100 ms)’ (Dessart, Livne & Waldman 2010). As exemplified by
these examples as well as the compilation in fig. 1 of Hamuy &
Pinto (2002), a typical range is v = 103–104 km s−1; let us then
assume the lower bound v = 103 km s−1.
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Figure 16. Survivability of a tight-orbit (2 au) planet during supernova.
The progenitor mass and ejected mass is given by M0 and Meje, respec-
tively. Each data point is based on 10 systems with e0 = (0.01, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9). For all cases, 
0 ≈ 1–2. The plot demonstrates
that the only way planets may remain bound after a supernova blast is by
initially residing in a narrow region of true anomaly space. This behaviour
was predicted in Sections 2.6.2 and 2.7, and specifically in Fig. 12. Equa-
tion (48) demonstrates why all planets on the black curve with open circles
with 160◦ ≤ f 0 ≤ 200◦ survive, and why all planets near pericentre are
ejected. Almost all planets that withstand a supernova are ejected unless
the percentage of the progenitor’s mass lost is the theoretical lower bound
(≈50 per cent) for supernovae of ≈7–20 M� progenitor masses.

Further, the highest known exoplanet radius is less than twice
Jupiter’s radius,3,4 so let us assume this value for our planet. We
can then test the extremes of the total mass lost (≡ Meje) based on
the progenitor mass and remnant mass bounds.

We assume the mass is blown past the orbit of the planet isotrop-
ically and at a constant value, and we consider 36 uniformly dis-
tributed values of f 0. For each, we adopt 10 values of e0 (0.01, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). We simulate these 360 systems
in each of four scenarios: with the two extreme values of μ0 (6 and
20 M�) and two extreme values of the remnant mass (1 and 3 M�).
For all these cases, 
0 ≈ 1–2, placing these systems in the weak
runaway regime at t = 0. The reason why 
0 is not higher for such a
great mass-loss rate is a0 is so low (2 au). However, to determine the
endpoint of orbital evolution, one needs to combine an estimate of

0 with a mass-loss duration time (or a remnant mass, for constant
mass-loss), which is independent of 
0. This is why the end-states
can change drastically for two systems even if their initial mass-loss
indices are equivalent.

Fig. 16 displays the result of our simulations. The figure demon-
strates that an appreciable number of planets can survive, but only
in the extreme case of the supernova ejecting just half of the pro-
genitor mass, and only if f 0 is closer to 180◦ than to 0◦. In the more
realistic cases of a greater mass-loss during supernova, the only
planets that may survive must have f 0 ≈ 180◦. This initial condition
appears to be the only protection mechanism against ejection for
robustly runaway (see Fig. 11) or impulsive (see Fig. 12) systems
that lose most of their mass. The impulsive limit can further help
us to explain Fig. 16 through equation (48): the top, black curve
with open circles corresponds to β = 1/2, and the highest initial
eccentricity we sampled in the simulations was e0 = 0.9. Therefore,

3 Extrasolar Planets Encyclopaedia at http://exoplanet.eu/
4 Exoplanet Data Explorer at http://exoplanets.org/

equation (48) gives cos f 0 < −0.9, meaning that all planets with
154◦ � f 0 � 206◦ should remain stable. The numerical simulations
confirm the theory. Additionally, Fig. 12 confirms why no planets
with initial true anomalies within 80◦ of pericentre survive, even
when just half of the star’s mass is lost.

In fact, if we decrease or increase the mass-loss rate (and hence

0) by an order of magnitude (to either v = 100 or 104 km s−1), and
rerun our simulations, we reproduce Fig. 16 closely. Therefore, in
such runaway regimes, the evolution becomes independent of the
mass-loss rate above a certain critical mass-loss rate. The realistic
implication of this finding is that the particular choice of ejecta ve-
locity assumed for a supernova is unimportant, as long it is assumed
to be higher than a critical minimum value.

3.3.5 The μ0 � 20 M� regime

There is great uncertainty regarding how the highest mass stars
lose mass and in what amounts. The possibilities for planetary
evolution around these stars are intriguing, and can be simulated
once a model has been adopted for a particular star. Stars in this
regime generally become neutron stars or black holes.5 Heger et al.
(2003) and Eldridge & Tout (2004) outline these potential stellar
fates as a function of initial progenitor mass and metallicity.

Black holes may form with or without a supernova. In the latter
case, mass is still lost during core collapse. Quantifying the extent
and time-scale of this mass-loss is crucial for determining the fate
of any orbiting planets. This process is thought to last on the order
of tenths of seconds to seconds (O’Connor & Ott 2011). The mass
lost during this process has been modelled to be as much as 1–
2 M� (Belczynski et al. 2010). However, this value could be zero;
Fryer (1999) argues that for progenitor masses above 40 M�, the
final black hole mass could be as large as the progenitor. Zhang,
Woosley & Heger (2008) indicates that stars at even greater masses,
with 100 < μ0 < 260 M�, may explode completely and leave
no remnant. These theoretical treatments are poorly constrained
by observations. However, observations do suggest that stars up to
300 M� exist (Crowther et al. 2010).

Hence, unlike in the previous subsections, stellar mass evolution
here remains qualitatively uncertain, as the amount of initial mass
lost could be any value up to 100 per cent. Therefore, we can frame
our cursory analysis in this section by considering what per cent
of the progenitor’s mass must be lost in order to produce ejection
or excitation. The large progenitor masses in this regime promote
adiabaticity, as indicated by equation (15), and hamper prospects
for planetary ejection, as indicated by equation (36). However, mass
could be lost through superwinds at a great rate of 10−4 M� yr−1

(Dessart et al. 2010; Yoon & Cantiello 2010), which might offset
the stabilizing effect of the large magnitude of the progenitor mass.

We can provide a preliminary overview of the impact large pro-
genitor masses with superwinds would have on the survivabil-
ity of planets. We consider three (strong) mass-loss rates, α =
{10−4, 10−5, 10−6}M� yr−1 and progenitor masses up to 150 M�.
For all these cases, unless a0 � 104 au, the planetary evolution will
be primarily adiabatic, as 
0 � 1. We find that at least ∼80 per cent
of a progenitor’s mass must be lost for any planet at a0 ∼ 103 au
to be ejected by any of these winds. However, for planets at a0 ∼
105 au, a mass-loss of α = 10−4 M� yr−1 does place the planet in
a runaway regime. In this regime, for f 0 = 0◦, the progenitor needs

5 In rare cases, at the very lowest metallicities, pair instability supernovae
will destroy the entire star and leave no stellar remnant.
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to lose just a few per cent of its initial mass to eject the highest
eccentricity planet, and roughly 50 per cent of its mass to eject
initially circular planets. These results conform to expectation from
equation (39), and hold for all progenitor masses of 20–150 M�.
Therefore, even without appealing to core collapse or weak super-
nova, the mass-loss from the highest mass stars in the Universe can
blow away any remaining Oort Clouds.

Detailed modelling of secondaries evolving amidst the complex
evolution of stars in this mass regime is a ripe topic for future
studies. Although the mass lost in core collapse can approach zero,
the nearly instantaneous time-scale for the mass-loss might have a
sudden pronounced effect on the planetary orbit. Further, fall-back
of mass from a weak supernova explosion on to a neutron star lasting
‘seconds to tens of hours’ (Heger et al. 2003) could trigger a black
hole. This fall-back will cause a still-bound planet’s semimajor axis
to decrease. Also, for stars that explode away almost 100 per cent
of their mass, one may investigate the minimum amount of mass
that could remain and still bind a planet. In this case, the planet’s
mass will become important.

4 D ISCUSSION

4.1 Oort Clouds

No Oort Clouds have been observed. However, comets thought to
originate in the Sun’s Oort Cloud have been observed, and have
motivated several studies that estimate the orbital extent of these
bodies. Levison et al. (2010) claim that the Oort Cloud extends
to ∼105 au, and Dybczyński (2002) claims that this is a ‘typical’
value for the outer boundary. Although planetary material might
exist throughout the scattered disc from the Kuiper Belt to the Oort
Cloud (e.g. Leto et al. 2008), some authors (Duncan, Quinn &
Tremaine 1987; Gardner et al. 2011) have set an inner boundary at
several thousand au. Other studies focus on a supposed break in the
Oort Cloud, separating it into an ‘inner’ and ‘outer’ region. This
bifurcation is claimed to occur at at ∼2 × 104 au (Hills 1981; Kaib
& Quinn 2008; Brasser, Higuchi & Kaib 2010).

These estimates pertain only to the Solar system. Oort Clouds
around other stars may exist. Stars born in denser clusters will have
more comets deposited into their clouds than did the Sun. Kaib &
Quinn (2008) simulate four different primordial environments (with
no cluster, and three clusters with densities of 10, 30 and 100 stars
per cubic parsec) and find that all produce similar ‘outer’ (a > 2 ×
104 au) Oort Clouds and qualitatively different inner ones. Further,
Brasser et al. (2010) consider the different types of Oort Clouds
that may form around other stars as a function of Galactocentric
distance. At large Galactocentric distances (>14 kpc), they find
that some (>10 per cent) Oort Cloud constituents orbit beyond
105 au.

All these estimates suggest that the majority of stellar mass pro-
genitors, including the Sun and those of subsolar mass, will excite
the eccentricity of Oort Clouds during stellar evolution. Most of
these Oort Clouds will lose material to interstellar space. Assuming
that the comets are roughly distributed uniformly in true anomaly,
then only a fraction will survive. This fraction is highly dependent
on the duration of mass-loss. The remaining comets will assume a
differential eccentricity distribution. Brasser et al. (2010) focus on
Galactic tides and how they strip off Oort Cloud constituents. In-
deed, Oort Clouds may not even survive to the post-main-sequence
phase. If they do, the Galactic tide will be stronger relative to the
star’s gravity for any surviving Oort Cloud objects, so the stable

region that the Oort Cloud can occupy will have shrunk at the same
time that the bodies’ orbits are expanding, potentially leading to
even more ejections. Further, as a star loses mass, its gravitational
influence within its stellar neighbourhood will shrink and be en-
croached by the potential wells of stellar neighbours.

However, as demonstrated by fig. 3 of Higuchi et al. (2007),
Galactic tides often need Gyr of evolution in order to cause an
appreciable change in a comet’s orbital elements. Short-lived mas-
sive stars will not often provide Galactic tides with this opportunity
before stellar mass-loss becomes the dominant perturbation on the
comets.

A more detailed modelling of Oort Clouds could enable inves-
tigators to link mass-loss from a white dwarf progenitor with the
cometary population of the resulting white dwarf (see Alcock et al.
1986; Parriott & Alcock 1998). Additionally, one should also con-
sider the difference in the stellar wind velocity at Oort Cloud dis-
tances versus its escape velocity when it leaves the star. As observed
by Debes & Sigurdsson (2002), because the wind crossing time is
typically longer than the Oort Cloud orbital time-scale, winds that
have slowed will enhance the system’s adiabaticity.

4.2 Wide-orbit planets

Initially, exoplanet discovery techniques were not well suited for
detecting planets that reside beyond ≈6 au on decade-long time-
scales, and this region remained relatively unexplored until the
mid-2000s. However, new observational techniques and carefully
targeted surveys are increasing the likelihood of uncovering planets
on wide orbits (e.g. Crepp & Johnson 2011). The discoveries of the
four planets with a ≈ 15, 24, 38, 68 au orbiting HR 8799 (Marois
et al. 2008, 2010) and the a ≈ 115 au planet orbiting Formalhaut
(Kalas et al. 2008) revealed that wide-orbit (a > 10–100 au) planets
do exist and incited great interest in their formation and evolu-
tion. Additionally, at least 10 wider orbit companions, which may
be massive planets that are close to the brown dwarf mass limit,
have been detected. Like Formalhaut b, the companion to GQ Lup
(Guenther et al. 2005) is thought to satisfy 100 < a < 200 au. Com-
panions around AB Pic (Chauvin et al. 2005), Oph 11 (Close et al.
2007) and CHXR 73 (Luhman et al. 2006) – all harbour semimajor
axis between 200 and 300 au, and those orbiting CT Cha (Schmidt
et al. 2008), 1RXS J160929.1−210524 (Lafrenière, Jayawardhana
& van Kerkwijk 2010) and GSC 06214−00210 (Ireland et al.
2011) satisfy 300 < a < 500 au. Companions with 500 < a <

1000 au include those orbiting UScoCTIO 108 (Béjar et al. 2008),
HIP 78530 (Lafrenière et al. 2011) and HN Peg B (Leggett et al.
2008). The three potentially planetary companions with the widest
known orbits are SR 12 C (1100 au, Kuzuhara et al. 2011), Ross 458
b (1168 au, Goldman et al. 2010) and WD 0806−661B b (2500 au,
Luhman, Burgasser & Bochanski 2011). Theoretical models place
the mass of the a = 2500 au object at 7 Jupiter masses. Our study
is particularly relevant to such wide-orbit companions.

During stellar evolution, wide-orbit planets in isolation will be-
have equivalently to Oort Cloud comets, and can be ejected with
similar ease. Planets may be mutually scattered out to distances
of ∼105 au while remaining bound to their parent systems (Veras,
Crepp & Ford 2009); beyond this distance, over time the effects of
passing stars are likely to strip the planet from the system. Another
mechanism for producing wide-orbit planets is capture from other
stars, or passing free-floaters. There is still a possibility that the Sun
contains a massive, very wide orbit companion. Fernández (2011)
discusses the prospects for detecting a wide-orbit (>104 au) Jovian
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mass companion to the Sun, and Matese & Whitmire (2011) suggest
that there is evidence for such a companion residing in the Sun’s
outer Oort Cloud. Regardless, such planets are very unlikely to have
formed in these environments; neither core accretion nor gravita-
tional instability formation models can fully form planets beyond
∼100 au (Dodson-Robinson et al. 2009). Embryos and/or partially
formed planets that were scattered beyond ∼103–105 au will un-
dergo the same dynamical evolution due to stellar mass-loss as a
fully formed planet. This situation might arise around short-lived,
high-mass stars, where the time-scale for core accretion might be
longer than the mass-loss time-scale.

4.3 Multiple planets

Introducing additional bodies to the system, such as a second planet,
or a belt of material, could significantly complicate the evolu-
tion. Debes & Sigurdsson (2002) investigate the first scenario, and
Bonsor, Mustill & Wyatt (2011) the second. In both cases, the
characteristics of their N-body simulations demonstrated that the
systems they studied were in the adiabatic regime. In this regime,
where stellar mass-loss produces quiescent adiabatic eccentricity
excitation of the order of 
0 (see equation 17), the eccentricity
variation of the second planet or belt particles can then be attributed
solely to the other planet. Additionally, the orbit of the true anomaly
is only negligibly affected by mass-loss in the adiabatic limit. Thus,
the main contribution of the stellar mass-loss in their studies is
through the well-defined (equation 2) increase in semimajor axis of
all objects in the system.

Including additional planets in situations where 
bif is reached
and/or exceeded represents several of the numerous potential exten-
sions to this work. The frequency of planet–planet scattering and the
resulting free-floating planet population in the midst of semimajor
axis and eccentricity variations from stellar mass-loss are important
issues to be addressed. Other situations to consider are how planets
may stay locked into or be broken from secular and mean motion
resonances, and how instability time-scales are affected.

4.4 Free-floating planets

The ejection of planetary material, whether it is in the form of par-
tially formed planets, fully formed planets, or comets, might con-
tribute to the free-floating mass present and potentially detectable
around dead stars. Evidence for the existence of free-floating plan-
ets has been mounting (Lucas & Roche 2000; Zapatero Osorio et al.
2000, 2002; Bihain et al. 2009) and was recently highlighted by
a report of potential detections of 10 free-floating planets (Sumi
et al. 2011). Also, the capability may exist to distinguish between
free-floaters and bound wide-orbit planets up to semimajor axes of
≈100 au (Han 2006).

Assuming that the same amount of planetary material was dis-
tributed equally among stars of all progenitor masses, then ≈7–
20 M� progenitors are by far the most likely stars to produce free-
floating material,6 followed by stars in the ≈4–8 M� progenitor
mass range (see Fig. 14). The ability of stars with μ0 � 20 M�
to produce free floating material is unclear and is largely depen-
dent on the evolutionary models used. For a given progenitor mass,

6 One potential indication of the origin of supernova-produced free-floaters
is their space velocities; neutron star ‘kicks’ cause the true space velocities
of young pulsars to reflect the (high) speed of the supernova ejecta (Hobbs
et al. 2005).

metal-poor and/or metal-rich stars may be prone to ejecting plan-
ets. However, because metal-rich stars are slightly more likely to
harbour planets than metal-poor stars (Setiawan et al. 2010), the
metal-poor stars which are dynamically prone to planetary excita-
tion might not initially harbour planets.

Detailed modelling of the Galaxy’s free-floating planet popula-
tion requires (1) an initial mass function; (2) better statistics for
planets orbiting stars other than Sun-like hosts; (3) knowledge of
how many planets inhabit wide orbits at for example, a = 103−5 au;
and (4) a better knowledge of the ability for ≈1–2 M� stellar-mass
progenitors to eject planets. Depending on these results, stellar evo-
lution might be the primary source of free-floating planets. Alter-
natively, if, for example, a negligible number of planets are shown
to inhabit orbits beyond a = 103 au, then the dominant source of
free-floating planets would likely lie elsewhere.

4.5 Pulsar planets

Our results suggest that very few first-generation pulsar planets ex-
ist. Such planets would have had to reside far enough away from the
expanding progenitor envelope to not be disrupted pre-supernova,
and then survive the supernova. Assuming a uniform distribution
of true anomalies, only (180◦ − f crit)/180◦ ≈ 11 per cent of planets
would have a fighting chance to survive due to the additional time
they would take to initially decrease their eccentricities. Even then,
their initial eccentricities would have to be high enough, and the
mass-loss duration short enough, to outlast the supernova. These
results suggest that unless pulsars can readily form planets or cap-
ture them from other systems, pulsar planets should be relatively
rare.

However, if the pulsar planet survived engulfment from the ex-
panding pre-supernova stellar envelope, then its semimajor axis
might be small enough to remain bound during the supernova. There
is one planet, HIP 13044 (Setiawan et al. 2010), which potentially
could have survived residing inside its star’s envelope (Bear, Soker
& Harpaz 2011). The spiral-in time of the planet could have ex-
ceeded the short duration (∼100 yr) of the RGB expansion and
engulfment, allowing the planet to survive. If close-in (�1 au) pul-
sar planets survive in a similar way, their final eccentricities could be
any value (see Fig. 11) but their semimajor axes will have increased
by many factors. The three pulsar planets orbiting PSR1257+12
(Wolszczan & Frail 1992; Wolszczan 1994) all have a < 0.5 au.
If they are first-generation planets, then a0 � 0.1 would have held
true for each. At such a small semimajor axis, their resulting dy-
namical evolution during supernova would be approximately in
the adiabatic-runaway transition region (
 ∼ 0.1–1). The result is
that their pre-Supernova eccentricities (which were probably nearly
zero due to tidal circularization) could have been excited by a few
hundredths to a few tenths, but not by enough to have suffered
ejection. Although such values fit the observations, the system is
significantly complicated by the mutual interactions amongst all the
three planets, including a resonance locking. Instead, the observed
pulsar planets may be second-generation planets (Perets 2010), i.e.,
captured (or even formed) after the supernova occurred.

4.6 Stellar properties

Other questions to consider focus on the star itself. How does non-
constant multiphase mass-loss affect the results here? Non-isotropic
and/or asymmetric mass-loss may have a drastic influence on the re-
sulting cometary (Parriott & Alcock 1998) and planetary (Namouni
2005; Namouni & Zhou 2006) evolution. In this case, the system no
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longer conserves angular momentum, and new equations of motion
must be derived. How do short bursts, periodic or not, of ejected
mass accompanying pulsating stars affect the planetary orbit? In
this case, planetary evolution may even undergo several transitions
between the adiabatic and runaway regimes. The expansion and/or
contraction of the stellar envelope and the resulting tidal effects on
surviving planets could also play an important role in some cases.
Tides will compete with planetary ejection and possibly eccentric-
ity excitation. Further, planets could be expanding their semimajor
axes – and their Hill Spheres – as they are experiencing tidal effects
and competing with the expanding stellar envelope. Some exoplan-
ets will likely be evaporated while others will travel through the
stellar envelope, accreting mass and being subject to a possible
non-isotropic mass distribution of the stellar envelope.

5 C O N C L U S I O N

The variable-mass two-body problem allows for the bodies to be-
come unbound or highly eccentric. The implications of this physical
principle affect all dying stellar systems which contain any orbiting
material. Many Oort Clouds and many wide-orbit planets will have
their orbits disrupted. The extent of the disruption depends crucially
on their initial semimajor axes, eccentricities and true anomalies,
and the subtleties of stellar evolution. Stars with progenitor masses
of 4–8 M� will readily eject objects that are beyond a few hundred
au distant, and excite the eccentricities of the remaining bound ma-
terial at that distance. Supernovae that produce neutron stars eject
nearly but not all orbiting material. Conversely, other exotic systems,
such as those with black holes, could have easily retained planets
during their formation. Stellar mass-loss might be the dominant
source of the free-floating planet population, and orbital properties
of currently observed disrupted planets in aged systems may be
tracers of the evolution of their parent stars.
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Schröder K.-P., Connon Smith R., 2008, MNRAS, 386, 155
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