AGN Feedback: Simulations of Black Hole

Ramesh Narayan
Galactic Nucleus

$M_{BH} \sim 10^6 - 10^{10} M_{\odot}$

Image credit: Lincoln Greenhill, Jim Moran
Three Accretion Regimes

ADAF/Slim Disk
Super-Eddington, radiation trapped
(Begelman ‘79; Abramowicz et al. ‘89)

Thin Accretion Disk
(Pringle & Rees ‘72; Shakura & Sunyaev ‘73; Novikov & Thorne ‘73)
Quasars, XRBs in high soft state

ADAF/RIAF
Radiatively inefficient
(Ichimaru ‘77; Rees et al. ‘82; Narayan & Yi ‘94, ‘95; Abramowicz et al. ‘95)
Accretion and Outflows

- Analytic disk theory (1D) is okay for understanding basic physics of accretion
- Jets and outflows involve 2D motions and are beyond analytical theory
- We need numerical simulations:
 - GR (black hole – Kerr metric!) ✔️
 - MHD (magnetic fields essential) ✔️
 - Radiation (tough problem) ?✔️
Numerical Simulations

- Simulations of varying degrees of complexity have been done over the years
 - Pseudo-Newtonian hydrodynamics
 - Pseudo-N magnetohydrodynamics (MHD)
 - General Relativistic MHD (GRMHD)**
 - Radiation hydro/MHD \rightarrow GRRMHD

- **Good news:** GRMHD simulations
 - Produce jets and winds from “generic” initial conditions
 - Provide new insights on accretion/jet physics
 - Provide useful information for AGN feedback
Feedback in Radio Mode/Maintenance Mode

ADAF/RIAF
Radiatively inefficient
(Ichimaru ‘77; Rees et al. ‘82; Narayan & Yi ‘94, ‘95; Abramowicz et al. ‘95)
GRMHD Simulations of ADAFs

- ADAF/RIAF is the easiest of the three accretion modes to simulate
- We can safely ignore radiation
- Geometrically thick: everything goes fast
- Simulations reach steady state out to fairly large radii
 - \(\sim \text{few } \times 100M \) in the best cases (still \(\ll R_B \))
- ADAFs readily form jets and outflows

Friday, 12 July 13
Sadowski et al. (2013)
Two Important Parameters

- BH Jet is powered by BH spin energy
- Jet power is sensitive to BH Spin and Magnetic Flux:
 \[P_{\text{jet}} \approx \Phi_{\text{mag}}^2 \Omega_H^2 / c \]
- For a given \(M_{\text{dot}} \), there is a limit to how much Magnetic Flux \(\Phi_{\text{mag}} \) can be pushed into the BH
- System at this limit: Magnetically Arrested Disk (MAD)
- GRMHD simulations of ADAFs readily achieve the MAD limit if sufficient coherent magnetic flux is available
- Jets are highly collimated: feedback efficiency low?
Sąadowski et al. (2013)
BH Jet in MAD state can have a large efficiency: $\eta_{\text{jet}} = \frac{P_{\text{jet}}}{M\dot{\text{dot}} c^2}$ can even exceed 100% (Tchekhovskoy et al. 2012)

Strong dependence of η_{jet} on spin parameter a_*
The Disk Wind is more boring:

- At best only mildly relativistic: $v \sim 0.1-0.2 \, c$
- Power source is primarily the Disk
- Power depends modestly on BH spin
- Power depends modestly on BH Mag Flux

- Large solid angle: $\sim 2\pi$
- Low power in comparison to jet
- Likely to be efficient source of feedback
Feedback efficiency depends on 3 parameters:

\(\frac{\dot{M}}{\dot{M}_{\text{Edd}}} \) (\(\dot{M}/\dot{M} \))

\(\Omega_H \) (range: 0—1)

\(\Phi_{\text{mag}} \) (range: 0—\(\Phi_{\text{max}} \))

Perhaps \(\Phi_{\text{mag}} \rightarrow \Phi_{\text{max}} \) (MAD)

Still, we need \(\dot{M} \), \(\Omega_H \) before we can “predict” how much energy or mmtm feedback occurs.

Available in principle in cosmological simulations (Sadowski et al. 2013)

\[
\begin{align*}
\dot{E}_{\text{jet}} & \approx 0.5 \left(\frac{\Phi}{\Phi_{\text{max}}} \right)^2 \left(\frac{\Omega_H}{0.2} \right)^2 \dot{M}c^2 \\
\dot{E}_{\text{wind}} & \approx 0.005 \left[1 + 3 \left(\frac{\Phi}{\Phi_{\text{max}}} \right)^2 \left(\frac{\Omega_H}{0.2} \right)^2 \right] \dot{M}c^2 \\
\dot{P}_{\text{jet}} & \approx 0.5 \left(\frac{\Phi}{\Phi_{\text{max}}} \right)^2 \left(\frac{\Omega_H}{0.2} \right)^2 \dot{M}c \\
\dot{P}_{\text{wind}} & \approx 0.1 \dot{M}c
\end{align*}
\]
MAD Limit
Major Caveat

- We do not have very good information on mass loss in the wind
- Serious limitation for feedback estimates

Unless we figure out the mapping between \dot{M}_{dot}^B and $\dot{M}_{\text{dot}}^{BH}$, it will be hard to come up with a predictive prescription for AGN energy/mmtm feedback in the maintenance mode.
MIND THE OTHER GAP

Gas Accretion on SMBH
AGN
Jets, Winds, Radiation

Local ISM
Host galaxy
Universe

8 - 12 July, 2013 at the Institute of Astronomy & Kavli Institute for Cosmology (KICC)
University of Cambridge, UK. Website: http://www.ast.cam.ac.uk/meetings/2013/MindTheGap

Friday, 12 July 13
Quasar Mode:

- Thin Accretion Disk
 (Pringle & Rees '72; Shakura & Sunyaev '73; Novikov & Thorne '73)
 Quasars, XRBs in high soft state

- Classic QSO
Make robust predictions for the radiative luminosity L_{disk} (no α dependence)

Radiative feedback is straightforward
- $\eta_{\text{disk}}(a_*)$

How about mechanical feedback via jets and winds?

GRMHD simulations have become feasible in recent years, so we can check
No Jets in Simulations of Thin Accretion Disks

- Thin disk simulations do not show anything that looks like a jet
- However:
 - thin disks are hard to simulate
 - models are converged only to $R \sim 20M$
 - No jet or wind out to 20M
- XRBs in the Thermal-Dominant State (thin disk regime) do not have jets
Quasar Mode: II

ADAF/Slim Disk
Super-Eddington, radiation trapped
(Begelman ‘79; Abramowicz et al. ‘89)

Radiative luminosity should be limited to at most \sim few L_{Edd}

What if $\dot{M} \gg \dot{M}_{\text{Edd}}$? What happens to all the energy?

How much energy comes out via a jet or a wind?

Need 3D Radiation GRMHD simulations

Friday, 12 July 13
Numerical Simulations of Super-Eddington Accretion

- The field has been dominated by Ohsuga (2003...): Radiation hydro/MHD
- Important results on winds
- However, no GR or even SR
- Recent developments:
 - GR+Hydro+Rad(M1) (Sadowski+ ‘13)
 - GR+MHD+Rad(M1) (McKinney+ ‘13)
- First results will be out soon
McKinney et al. (2013)
Preliminary!!

Friday, 12 July 13
Very Preliminary

\[\dot{M}_{\text{BH}} = \frac{78 L_{\text{Edd}}}{c^2} \]

\[L_{\text{radiation}} = 1.1 L_{\text{Edd}}, \eta_{\text{rad}} = 0.015 \]

\[L_{\text{Poynting}} = 9.2 L_{\text{Edd}} \]

\[L_{\text{matter}} = 2.3 L_{\text{Edd}} \]

\[L_{\text{total}} = 12.6 L_{\text{Edd}}, \eta_{\text{total}} = 0.16 \]
Summary

- Given M_{BH}, $M_{dot_{BH}}$, Ω_{H}, Φ_{mag} ($= \Phi_{max}$?), BH simulators are able to estimate $E_{dot_{jet}}$, $P_{dot_{jet}}$, $E_{dot_{wind}}$, $P_{dot_{wind}}$

- What other quantities would you like?
 - Angular distribution of energy/mmtm?
 - Lorentz factor/velocity?
 - SMBH spinup/spindown?

- But major uncertainty: $M_{dot_{B}}$ vs $M_{dot_{BH}}$
 - Prognosis is uncertain
MIND THE OTHER GAP

8 - 12 July, 2013 at the Institute of Astronomy & Kavli Institute for Cosmology (KICC)
University of Cambridge, UK. Website: http://www.ast.cam.ac.uk/meetings/2013/MindTheGap

Gas Accretion on SMBH
AGN
Jets, Winds, Radiation

Local ISM
Host galaxy
Universe

Lucio Mayer
Norman Murray
Thorsten Naab
Ramesh Narayan
Eve Ostriker

Virginia Bennett
Cathie Clarke
Tiago Costa
Mike Curtis
Martin Haehnelt
Simon Kirk

Friday, 12 July 13