Institute of Astronomy

The most detailed exoplanet weather map ever

Published on 01/10/2014 
In this artist illustration the Jupiter sized planet WASP-43b orbits its parent star in what is one of the closest orbits ever measured for an exoplanet of its size — with a year lasting just 19 hours. The planet is tidally locked meaning it keeps one hemisphere facing the star, just as our Moon keeps one face toward Earth. The colour gradient on the planet represents the temperature across its atmosphere. This is based on data from a recent study that mapped the temperature of WASP-43b in more detail than has been done for any other exoplanet. Credit ESA, NASA.

The most detailed exoplanet weather map ever

A team of scientists using the NASA/ESA Hubble Space Telescope have made the most detailed map ever of the temperature of an exoplanet’s atmosphere, and traced the amount of water it contains. The planet targeted for both of the investigations was the hot-Jupiter exoplanet WASP-43b.

WASP-43b is a planet the size of Jupiter but with double the mass and an orbit much closer to its parent star than any planet in our Solar System. In fact, it has one of the shortest years ever measured for an exoplanet of its size — lasting just 19 hours.

A team of astronomers over two companion studies have now created detailed weather maps of WASP-43b. One study mapped the temperature at different layers of the planet’s atmosphere, and the other traced the amount and distribution of water vapour within it.

Our observations are the first of their kind in terms of providing a two-dimensional map of the planet’s thermal structure”, said Kevin Stevenson from University of Chicago, USA, lead author of the thermal map study. “These maps can be used to constrain circulation models that predict how heat is transported from an exoplanet's hot day side to its cool night side.”

The planet has different sides for day and night because it is tidally locked, meaning that it keeps one hemisphere facing the star, just as our Moon keeps one face toward Earth. The Hubble observations show that it has winds that howl at the speed of sound from the day side that is hot enough to melt iron — soaring above 1500 degrees Celsius — to the pitch black night side that sees temperatures plunge to a comparatively cool 500 degrees Celsius.

To study the atmosphere of WASP-43b the team combined two previous methods of analysing exoplanets for the first time. By looking at how the parent star’s light filtered through the planet’s atmosphere — a technique called transmission spectroscopy — they determined the water abundance and temperature structure of the atmosphere between the day and night hemispheres.

In order to make the map more detailed the team also measured the water abundances and temperature at different longitudes. To do this they took advantage of the precision and stability of Hubble’s instruments to subtract more than 99.95% of the parent star’s light allowing them to study the light coming from the planet itself — A technique called emission spectroscopy. By doing this at different points of its orbit around the parent star they could map the atmosphere across its longitude.

“We have been able to observe three complete rotations — three years for this distant planet — during a span of just four days,” explained Jakob Bean from the University of Chicago, USA, co-author on both papers. “This was essential in allowing us to create the first full temperature map for an exoplanet and to probe its atmosphere to find out what elements it held and where.”

Finding out how enriched planets are in different elements provides vital clues to understanding how they formed.  “Because there’s no planet with these tortured conditions in our Solar System, characterising the atmosphere of such a bizarre world provides a unique laboratory for better understanding planet formation and planetary physics,” said Nikku Madhusudhan of Cambridge University, UK, co-author of both studies. “In this case the discovery fits well with already existing models of how Jupiter-like planets behave.”

The team found that WASP-43b reflected very little of its host star’s light. An atmosphere like that on Earth, with clouds that reflect most of the sunlight, is not present on WASP-43b. But, the team did find water vapour in the planet’s atmosphere.  “The planet is so hot that all the water in its atmosphere is vapourised, rather than condensed into icy clouds like on Jupiter,” said team member Laura Kreidberg of the University of Chicago, lead author of the study mapping water on the planet.

Water is thought to play an important role in the formation of giant planets. Astronomers theorise that comet-like bodies bombard young planets, delivering most of the water and other molecules that we observe. However, the water abundances in the giant planets of our Solar System are poorly known because water is locked away as ice deep in their atmospheres.

“Current probes have not been able to penetrate deep enough into Jupiter’s atmosphere to obtain a clear measurement of its water abundance. But this giant planet is different,” added Derek Homeier of the École Normale Supérieure de Lyon, France, co-author of the studies. “WASP-43b’s water is in the form of a vapour that can be much more easily traced. So we could not only find it, we were able to directly measure how much there is and htest for variations along the planet’s longitude.”

In WASP-43b the team found the same amount of water as we would expect for an object with the same chemical composition as the Sun.  “This tells us something fundamental about how the planet formed,” added Kreidberg. “Next, we aim to make water-abundance measurements for different planets to explore their chemical abundances and learn more about how planets of different sizes and types come to form around our own Sun and the stars beyond it.”

The results are presented in two new papers, one on the thermal mapping of the planet’s atmosphere — published online in Science Express on 2 October — and the other on mapping the water content of the atmosphere — published in The Astrophysical Journal Letters on 12 September 2014.

IoA contact:

Nikku Madhusudhan, Institute of Astronomy, University of Cambridge

Tel: +1 617 475 5112  Cell: +44 7804 419140

Email: nmadhu@ast.cam.ac.uk

 

 

 

 

Image A: Exoplanet WASP-43b orbits its parent star — Annotated

 

 

 

Tags:
Page last updated: 10 October 2014 at 14:11