Institute of Astronomy

Dark Galaxies of the Early Universe Spotted for the First Time

Published on 11/07/2012 

For the first time, dark galaxies — an early phase of galaxy formation, predicted by theory but unobserved until now — may have been spotted. These objects are essentially gas-rich galaxies without stars. Using ESO’s Very Large Telescope, an international team thinks they have detected these elusive objects by observing them glowing as they are illuminated by a quasar.

Dark galaxies are small, gas-rich galaxies in the early Universe that are very inefficient at forming stars. They are predicted by theories of galaxy formation and are thought to be the building blocks of today’s bright, star-filled galaxies. Astronomers think that they may have fed large galaxies with much of the gas that later formed into the stars that exist today.

Because they are essentially devoid of stars, these dark galaxies don’t emit much light, making them very hard to detect.  For years astronomers have been trying to develop new techniques that could confirm the existence of these galaxies. Small absorption dips in the spectra of background sources of light have hinted at their existence. However, this new study marks the first time that such objects have been seen directly.

The team took advantage of the large collecting area and sensitivity of the Very Large Telescope (VLT), and a series of very long exposures, to detect the extremely faint fluorescent glow of the dark galaxies. They used the FORS2 instrument to map a region of the sky around the bright quasar  HE 0109-3518, looking for the ultraviolet light that is emitted by hydrogen gas when it is subjected to intense radiation. Because of the expansion of the Universe, this light is actually observed as a shade of violet by the time it reaches the VLT.

The team detected almost 100 gaseous objects which lie within a few million light-years of the quasar. After a careful analysis designed to exclude objects where the emission might be powered by internal star-formation in the galaxies, rather than the light from the quasar, they finally narrowed down their search to 12 objects. These are the most convincing identifications of dark galaxies in the early Universe to date.

The astronomers were also able to determine some of the properties of the dark galaxies. They estimate that the mass of the gas in them is about 1 billion times that of the Sun, typical for gas-rich, low-mass galaxies in the early Universe. They were also able to estimate that the star formation efficiency is suppressed by a factor of more than 100 relative to typical star-forming galaxies found at similar stage in cosmic history.

Research team:

Sebastiano Cantalupo (University of California, Santa Cruz, USA)

Simon J. Lilly (ETH Zurich, Switzerland) 

Martin G. Haehnelt (Kavli Institute for Cosmology, Cambridge, United Kingdom).

This research was presented in a paper entitled "Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z=2.4", by Cantalupo et al. to appear in Monthly Notices of the Royal Astronomical Society.

Related Links:

ESO press release

This deep image shows the region of the sky around the quasar HE0109-3518. The quasar is near the centre of the image. The energetic radiation of the quasar makes dark galaxies glow, helping astronomers to understand the obscure early stages of galaxy formation. Dark galaxies are essentially devoid of stars, therefore they don’t emit any light that telescopes can catch. This makes them virtually impossible to observe unless they are illuminated by an external light source like a background quasar.

Page last updated: 9 May 2013 at 19:56