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ABSTRACT
KIC 8462852 is a star in the Kepler field that exhibits almost unique behaviour. The deep, irregular and aperiodic dips in its
light curve have been interpreted as the breakup of a large exocomet on a highly eccentric orbit whose post-disruption material
obscures the star. It is hypothesised that a nearby M-dwarf, recently confirmed to be bound to the system, could be exciting
planetesimals in a source belt to high eccentricities if its orbit is highly misaligned with the belt: an effect known as the ‘Eccentric
Kozai-Lidov Mechanism’. To quantify how often this effect is expected to occur, this paper presents a Monte Carlo model of
wide binary stars with embedded, misaligned planetesimal belts. These belts collisionally erode over time until they are excited
to high eccentricities on secular timescales by a companion star if its orbit is sufficiently misaligned. The large planetesimals
then produce an observable dimming signature in the light curve for a set period of time which may or may not overlap with
similar events. The model finds that, for dimming events that persist for 100 yr, the most likely companion stars are located at
102 − 104 au, the most likely belts are at 102 − 103 au and the system age is most likely to be 102 − 103 Myr. However, the
probability of observing one or more stars exhibiting this phenomenon in the Kepler field is 1.3 × 10−3, such that it is unlikely
this mechanism is driving the observations of KIC 8462852.

Key words: Planets and satellites: dynamical evolution and stability – Comets: general – Kuiper belt: general

1 INTRODUCTION

Transits, whereby bodies in other systems are observed to pass in
front of their host stars, have been used to great effect to explore the
wealth of extrasolar planetary systems in the Galaxy (Borucki et al.
2010). The Kepler space telescope has used this technique to find
over 2,600 exoplanets, some in the habitable zone, and characterise
their radii and masses, discovering some of the most well known
and dynamically interesting systems such as Kepler-223 (Mills et al.
2016). Planets are not the only objects to have been detected around
other stars. Transits due to smaller bodies have also been found with
Rappaport et al. (2018) finding evidence of comets around F stars
using Kepler observations of their asymmetric transits. A dust cloud
released from bodies forming a tail of debris can explain both the
levels and asymmetry of the transits, and enables a mass estimate of
the parent bodies.

One of these ‘dipper’ stars that has so far evaded explanation,
however, is the main sequence F star KIC 8462852, also known
as ‘Boyajian’s star’ or ‘Tabby’s star’. Boyajian et al. (2016) found,
using the Kepler light curves, that the star experienced irregularly
shaped transits with depths up to 20%; these transits were aperiodic
and lasted between 5 and 80 days. In addition to this a level of
secular dimming was detected but the exact amount is in dispute
depending on the interpretation of archival data from photographic
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plates (Montet & Simon 2016; Schaefer 2016). Boyajian et al.
(2016) considered many possibilities for the cause of the transits
but came to the conclusion that the most consistent with the data
was the passage of a family of exocomets transiting at about 0.5
au. These could result from the breakup of a single body greater
than 100 km in size with a minimal mass of 10−6𝑀⊕ . It has since
been shown that a family of comets moving on similar orbits can
reproduce the observed transits with about 700 objects with 10 km
radii needed (Bodman & Quillen 2016). An alternate hypothesis was
put forward by Wright & Sigurdsson (2016) where the transits are
caused by an artificial mega-structure, known as a ‘Dyson sphere’
or a ‘Dyson swarm’, though this requires the presence of extra
terrestrial intelligence in the system.

Wyatt et al. (2018) extended the comet hypothesis by showing that
the secular dimming could be caused by material distributed along
a single elliptical orbit. Though they make no assumptions about
the origin of this material, it fits well with the exocomet hypothesis
where one large (> 100 km) body breaks up and the resultant
material is spread around the progenitor’s elliptical orbit. The
constraints derived from the secular dimming give a transit distance
between 0.05 and 0.6 au. The parent body for these comets would
likely have come from a reservoir of debris left over from planet
formation, like our own Kuiper belt, and was perturbed onto its
current orbit. While most belts observed in other planetary systems
typically exist at 10s to 100s of au from their host star, the lack of
detection of an infrared excess around KIC 8462852 does not rule
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out a cold belt at these distances (Thompson et al. 2016). Given that
these exocomets are inferred to transit at between 0.05 and 0.6 au
from the host star, the planetesimals causing these transits must have
very high eccentricities (∼ 0.99) leaving the question: how did the
parent body end up on such a highly elliptical orbit? One hypothesis
originally proposed by Boyajian et al. (2016) is that the parent
body could have evolved under action of the Kozai-Lidov mechanism.

The Kozai-Lidov mechanism is a dynamical process first formu-
lated by Kozai (1962) and Lidov (1962). It is a three body effect that
occurs when the orbital planes of two bodies orbiting the same host
star are highly misaligned. The two bodies then undergo oscillations
in inclination and eccentricity as they exert a gravitational torque on
each other. Kozai (1962) examined this effect in the context of the
perturbation of Jupiter on an inclined comet. That study neglected
the effect of Jupiter’s eccentricity and found that the oscillations take
place for mutual inclinations 𝑖 in the range cos(i) < 2/5 and found
a well defined relationship between the initial mutual inclination
and the maximum eccentricity of the comet. In this case with a
perturber on a circular orbit, the maximum eccentricity can only be
appreciably large for initial mutual inclinations close to 90 degrees.
Including the effects of a perturber’s eccentricity leads to much
more complicated behaviour; studies have shown that in this case
extremely high eccentricities can be reached and the orbital plane of
the perturbed body can flip from prograde to retrograde (Lithwick
& Naoz 2011). This behaviour can occur at high inclination and
low eccentricity (HiLe) or low inclination and high eccentricity
(LiHe) (Naoz 2016) and is often chaotic (Li et al. 2014). Though
eccentricities very close to 1 can theoretically be achieved, in reality
the effect of General Relativity and/or tides becomes dominant once
the body gets close enough to the host star (Naoz et al. 2013). The
action of these effects is to cause a precession in the longitude of
pericentre of the body’s orbit which competes with that induced
by the Kozai-Lidov mechanism, shutting it off if its perturbation
is stronger. The dissipative effect of tides could then also act to
circularise the orbit at a low pericentre and increase the timescale for
the Kozai-Lidov evolution essentially decoupling the bodies from
each other. Indeed, this has been proposed as a formation mechanism
of both hot Jupiters and close Kuiper belt binaries (Perets & Naoz
2009; Naoz et al. 2010, 2012).

For the planetesimals in a belt around KIC 8462852 to undergo
eccentricity oscillations from this mechanism, a perturber is needed.
This could be an unseen planet in the system, however it would have
to have become significantly inclined to the planetesimal belt at
some point in its life. Planets form out of the protoplanetary disc
that evolves into a debris disc once the gas has dispersed, thus it is
expected that debris discs and planets should be aligned and there
are many systems where this is the case including our own Solar
system. However, there are planetary systems where the planets
have large mutual inclinations with respect to each other like 𝜋 Men
Xuan & Wyatt (2020). These are thought to form from dynamical
instabilities where planets undergo close encounters and scatter
each other to high inclinations. Thus, it is possible for there to exist
systems with high mutual inclinations between planets and debris
discs (as is actually seen in HD 106906 (Nguyen et al. 2021)),
though close encounters that lead to inclinations high enough for the
Kozai-Lidov mechanism may be highly unlikely. A more promising
candidate for a misaligned perturber is a 0.4 𝑀⊙ M dwarf seen with
small on sky separation from KIC 8462852 in Keck AO images
(Boyajian et al. 2016). It was hypothesised to be bound as it has a
similar Gaia distance estimate to KIC 8462852 of about 450 parsecs

(Gaia Collaboration et al. 2016). Follow up observations by Pearce
et al. (2021) show that the two stars have the same proper motion
and are in fact bound with a projected separation of 878 ± 8 au.
Wide binaries such as this could potentially form through one of two
pathways. The first is core fragmentation whereby the collapsing
cloud of gas that the stars form from fragments into two large cores
that form two stars (Goodwin et al. 2004; Fisher 2004; Offner et al.
2010). The other mechanism is dynamical capture where stellar
encounters within the birth cluster result in pairs of stars that formed
separately becoming bound, whilst other stars are ejected, though
this method is too inefficient to account for all binary stars (Kroupa
& Burkert 2001). Either way, it could have a random inclination to
any planetesimal belt around KIC 8462852 and could potentially
be highly inclined (Hale 1994), causing Kozai-Lidov oscillations of
small bodies which could explain the observations.

This paper aims to test how often the action of the Kozai-Lidov
mechanism on a belt of planetesimals due to a wide binary compan-
ion can excite the largest planetesimals to high eccentricities. The
derived occurrence rate can then be compared to the one potential
detection in the Kepler field to see if the Kozai-Lidov mechanism is
a likely explanation for the phenomenon. In section 2 the parameter
space of the Kozai-Lidov mechanism for an eccentric perturber is
explored to investigate what orientation a general planetesimal belt
has to start with to reach low pericentres and the fraction of objects
that reach them. This is examined through integrating the secular
equations of motion and comparing the results with N-body simula-
tions. Section 3 outlines a Monte Carlo model of binary systems in
the Kepler field which is used to find the fraction of the systems that
undergo Kozai-Lidov oscillations and for what fraction of their main
sequence lifetimes they produce observable signatures. Section 4
details the results of this model for sensible system parameters, ex-
amining the most likely location of belts and companions in these
systems. Section 5 illustrates the dependence of the results on the
unknown parameters of the model and the choice of initial distribu-
tions as well as providing a discussion on the caveats of the model
and section 6 presents our conclusions.

2 PARAMETER SPACE EXPLORATION OF THE
ECCENTRIC KOZAI-LIDOV MECHANISM

If we are to create a Monte Carlo model of the action of the Kozai
mechanism on stars and their planetary systems in the Kepler field
it is first necessary to examine how belts of planetesimals behave
in the presence of an inclined companion star. Once this behaviour
has been discerned, it can then be fed into the Monte Carlo model
to produce a probability that the Kozai mechanism is causing the
variability in the lightcurve of KIC 8462852. Specifically, the
inclinations between the belt and companion star that allow low
pericentres to be reached and the fraction of objects in such an
inclined belt that reach a low enough ‘threshold’ pericentre to cause
observations are needed for the Monte Carlo model.

This work is restricted to the action of wide binary companion
stars on planetesimal belts: specifically we are considering the
Kozai-Lidov mechanism in the case of an external massive perturber
and an internal massless perturbed object which does not exert
a torque on the perturber. There are four main variables in this
problem which are all orbital elements of the perturbed object as
the orbital elements of the perturber do not change with time. In our
context these are a planetesimal and a companion star respectively
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The EKM as the cause of transits of KIC 8462852 3

and hereafter referred to as such. The variables of the planetesimal’s
orbit are: the mutual inclination with respect to the companion star
(𝑖), the eccentricity (𝑒), the longitude of ascending node as measured
with respect to the plane of the binary (Ω) and the longitude of
pericentre (𝜔). The basic setup of the problem is illustrated in figure
1. Whilst these are the only variables in the problem, there are also
other, constant, parameters of the system that are important. For
example, the masses of the two stars contribute to the timescale of
the effect, but not its amplitude. Likewise, the semi-major axes of
the two orbits and the eccentricity of the companion star affect the
timescale to first order, though it has been shown that they have
second order effects on the amplitude of motion (Naoz et al. 2013).

There are two ways that the variation of these orbital elements
can be explored: the secular equations of motion can be integrated
numerically, or N-body integrations can be used to numerically in-
tegrate Newton’s second law. The latter will be more accurate but
also take a prohibitive amount of time and so the full exploration of
parameter space will be undertaken with the secular equations and
the results compared to N-body integrations.

2.1 The Secular Equations

The Kozai-Lidov mechanism is a subset of the hierarchical three body
problem. One comparatively massless planetesimal (𝑚pl) orbits a
massive host star 𝑀∗ which is also in a binary orbit with a companion
star of mass 𝑀c. The system is hierarchical because 𝑎pl ≪ 𝑎c.
The Hamiltonian for the massless planetesimal 𝑚pl is approximately
given by

𝐻𝑇𝑃 ≈ 3
8
𝐺𝑀∗𝑚pl
𝑎c

(
𝑎pl
𝑎c

)2 1
(1 − 𝑒2

c )3/2
(𝐹quad + 𝜖𝐹oct), (1)

where

𝜖 =
𝑎pl
𝑎c

𝑒c

1 − 𝑒2
c

(2)

and 𝐹quad and 𝐹oct are the quadrupole and octupole contributions
respectively. These are functions of the orbital elements and are listed
in appendix A1. For all the following integrations of the secular
equations we use a renormalised Hamiltonian which removes the
prefactors in equation 1. This simply results in a renormalised time
parameter 𝜏 which is related to the true time t by

𝑡 =
8𝑀∗𝑎3

c (1 − 𝑒2
c )3/2

3𝑚c𝑎3
plΩ∗

𝜏, (3)

where Ω∗ is the angular velocity of 𝑚pl about 𝑀∗.

The Hamiltonian in equation 1 has been averaged over the longi-
tudes of both the planetesimal and companion, expanded in the ratio
𝑎pl/𝑎c and truncated after the octupole term. This approximation is
equivalent to smearing the objects out over their orbits to form a wire
whose density at some point is inversely proportional to the orbital
velocity at that location; these wires then exert a gravitational torque
on each other proportional to their mass (so the massless planetesimal
‘wire’ does not exert a torque on the companion). If the Hamiltonian
is cut off at first order, such that only the quadrupole term is left, then
the system is integrable: this is referred to as the standard Kozai-
Lidov mechanism (hereafter referred to as the ‘SKM’). This also
arises if the companion is on a circular orbit such that 𝑒c ≈ 𝜖 ≈ 0. In

the case of the SKM, the orbit of the planetesimal exhibits coupled
oscillations in its inclination and eccentricity, becoming more eccen-
tric and less inclined to the perturber before reversing, as illustrated
in figure 2. The timescale for these oscillations to occur is given by
(Liu et al. 2015a)

𝑡quad = 5.3
(
𝑎pl

20au

)−3/2 (
𝑀∗

1.43𝑀⊙

)1/2 (
𝑀c

0.4𝑀⊙

)−1 ( 𝑎c
1000au

)3

(1 − 𝑒2
𝑐)3/2Myr.

(4)

From this it can be seen that 𝑡quad ≫ 𝑡orb as the system is
hierarchical. Also, the closer the planetesimal is to the companion
star (i.e. the smaller the ratio 𝑎c

𝑎pl
), the faster the oscillations occur.

The reason for the coupling between eccentricity and inclination in
this case is because the component of the planetesimal’s angular
momentum that is parallel to the companion’s angular momentum
𝐽𝑧 ∝ cos(𝑖)

√
1 − 𝑒2 is conserved (Kozai 1962; Lidov 1962).

If the perturber has an appreciable eccentricity then 𝜖 ≠ 0 and
the octupole terms in the expansion of the Hamiltonian become
important; these terms can significantly change the overall dynamical
behaviour of the system. Thus, the quantity 𝜖 acts as the ‘strength’
of the octupole contribution and for these effects to be significant
without the secular approximation breaking down it must lie in the
range 10−3 − 10−1 (Naoz 2016). This case is known as the eccentric
Kozai-Lidov mechanism (hereafter referred to as the EKM). The
timescale for these ‘octupole order’ effects is given by

𝑡oct =
𝑡quad

𝜖1/2 . (5)

Using Hamilton’s equations we can find the rate of change
of the planetesimal’s orbital elements with time which can then
be integrated numerically and thus perform a parameter space
exploration. These equations are listed in appendix A for both the
SKM (𝜖 = 0) and the EKM (𝜖 ≠ 0).

2.2 Parameter Space Exploration

The numerical integrator used for this analysis is the LSODA
package (Hindmarsh 2019; Petzold 1983). It handles stiff and
non-stiff differential equations using the BDF and Adams method
respectively, automatically detecting which is needed at each
timestep. The timestep it uses is variable and is set to keep the
relative and absolute error tolerances below a threshold value. For
all of the following work, the error tolerance is set to 10−11 in order
to adequately capture the high eccentricities achieved (e ≫ 0).

The general behaviour of a particle undergoing the eccentric Kozai
mechanism for a specific set of initial conditions is shown in figure 3.
The left panel shows the evolution of cos(𝑖) for the paramters noted
in the caption. The inclination oscillates on a comparatively short
timescale given roughly by 𝑡quad and is equivalent to evolution in
the standard Kozai mechanism. This behaviour is modulated by the
longer term orbital flips that happen on the comparatively longer
octupole timescale 𝑡oct. The right panel shows the eccentricity,
plotted as 1 − 𝑒, restricted to where the eccentricity is closest to 1
for clarity. It highlights the extreme eccentricities reached in this
situation with the maximum being when 1 − 𝑒 ∼ 10−7, though it
should be noted that other physical processes would prevent such a
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Figure 1. An example of the type of planetary system that might undergo Kozai-Lidov evolution. A host star (yellow) is orbited by a planetesimal (brown) in
a belt of particles (light grey). Also in orbit around this system is a wide stellar companion (red) which has been drawn closer to the belt than expected in a
hierarchical system for clarity. The inclination 𝑖, longitude of pericentre 𝜔 and the longitude of ascending node Ω of the planetesimal’s orbit is shown to clarify
their geometrical significance. The orange line represents the line of nodes, where the disc intersects the orbital plane of the companion, and the green line
represents the semi-major axis of the planetesimal’s orbit which is in the plane of the disc. The black lines represent a 3D coordinate basis aligned with the
major, minor and perpendicular axes of the elliptical orbit of the companion.
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Figure 2. Evolution of the inclination (blue) and eccentricity (orange) of a
test particle in the SKM scenario (𝑒2 = 𝜖 = 0). The initial values of the
orbital elements of the perturbed object are 𝑖0 = 80◦, 𝑒0 = 0.05, 𝜔0 = 180◦
and Ω0 = 0.

high eccentricity from ever being reached (such as GR precession,
sublimation, collision with the star). This set of initial conditions
was used by Lithwick & Naoz (2011) and these results can be
compared with figures 4 and 6 from their work.

For the Monte Carlo model outlined in section 3, we will need to
know the inclinations between belts and companion stars that allow
planetesimals in the belt to reach high eccentricities. As we will be
dealing with eccentricities very close to one, we will instead examine
the ‘scaled pericentre’ parameter defined to be

𝑞′ = 1 − 𝑒pl =
𝑞pl
𝑎pl

, (6)

which is the true pericentre of a planetesimal orbit scaled by
the semi-major axis. The minimum scaled pericentre 𝑞′ that a
planetesimal reaches will depend on its initial orbital elements: 𝑖0,
Ω0, 𝜔0 and 𝑒0. When considering belts of planetesimals, however,
all objects in a belt will share the same initial inclination 𝑖0 and
longitude of ascending node Ω0 relative to a distant perturber as
illustrated in figure 1: it is these two parameters that define the belt.
Within the belt the planetesimals will have a distribution of initial
eccentricities 𝑒0 and longitudes of pericentre 𝜔0. Therefore, in the
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Figure 3. Evolution of a test particle in the eccentric Kozai-Lidov mechanism with 𝜖 = 0.01. Initial conditions were: 𝐼0 = 72.5◦, 𝑒0 = 0.192, 𝜔0 = 0, Ω0 =
𝜋. The left panel shows the time evolution of the cosine of inclination. The right panel shows the time evolution of the eccentricity, zooming in on where it
gets very close to 1. Different ranges of normalised time (𝜏) are used in each plot to highlight where the eccentricity is predicted to reach very extreme values
(1 − 𝑒 ≈ 10−7).

context of examining how close to their host stars particles in a
disc would be seen to get, it is necessary to find min(𝑞′ (𝑖0,Ω0; 𝜖)).
This is the minimum possible scaled pericentre that can be achieved
by one of the particles in a belt defined by 𝑖0 and Ω0 and is
shown in figure 4. The value for each disc represents the minimum
scaled pericentre found when doing 100 integrations with randomly
distributed values of 𝜔0 and initial eccentricites taken from a
Rayleigh distribution with peak 0.03. The Rayleigh distribution
of eccentricities is motivated by observations of objects in the
classical Kuiper belt and from debris disc scale heights (assuming
𝑒 ∼ 𝐼) (Sai et al. 2015; Han et al. 2022) as well as N-body
simulations of mutual planetesimal scattering (Ida & Makino 1992),
though in our model a companion star is perturbing the disc so the
characteristic eccentricity could be higher (Mustill & Wyatt 2009).
Each integration ran for a time of 𝜏 = 500 and the orbital elements
were recorded at 107 equally spaced intervals; the process was
repeated for three values of 𝜖 = [10−3, 10−2, 10−1]

Figure 4 shows that there is only a weak dependence of
min(𝑞(𝑖0,Ω0; 𝜖)) onΩ0 over the probed values of 𝜖 , whereas there is
a strong dependence on 𝑖0. As 𝜖 increases, the range of 𝑖0 over which
it is possible to get very low scaled pericentres increases from a small
window around 90◦ to a window that extends all the way down to
45◦ which matches with the simulations undertaken previously by
O’Connor et al. (2021). Figure 4 shows that it is important to consider
the EKM effects when modelling planetesimal belts in wide binaries
as it widens the range of initial inclinations at which planetesimals
can achieve low pericentres compared to the SKM case. In the SKM,
to achieve a scaled pericentre 𝑞′crit, planetesimals must have initial
inclinations greater than 𝑖crit where

cos(𝑖crit) = ±
√︂

3
5
(1 − (1 − 𝑞′crit)

2). (7)

This leads to a ‘window’ in initial inclination around 90◦ within
which a planetesmial will reach scaled pericentres 𝑞′ < 𝑞′crit and is
given by

Table 1. The parameters used in the N-body integrations to achieve different
octupole strengths.

𝜖 𝑎1 / au 𝑎2 / au 𝑒2
0.001 88.5 885 0.01
0.01 87.6 885 0.1
0.1 18.68 885 0.9

Δ𝑖0 ≈ 180
𝜋

√︄
24𝑞′crit

5
, (8)

where Δ𝑖0 is in degrees and 𝑞′crit ≪ 1 is assumed. Hence, to achieve
𝑞′crit < 10−4 in the EKM case (assuming 𝜖 = 10−1) a planetesimal
must have 𝑖0 ≥ 45◦ as can be seen from figure 4, but in the SKM
case, using equation 8, a planetesimal must have 𝑖0 ≥ 88.75◦.

2.3 Comparison with N-body Simulations

The validity of these results is examined with N-body integrations.
The IAS15 integrator in rebound was used for the comparison
(Rein & Spiegel 2015; Rein & Liu 2012). It uses a 15th order
modified Runga-Kutta method and Gauss-Radau spacing and has a
variable timestep to make sure the motion at pericentre is adequately
captured when the orbit is highly eccentric and the particle is moving
very fast. Rein & Spiegel (2015) show that it copes well with the
extreme eccentricities achieved in the EKM up to 𝑒 ∼ 1 − 10−10

whilst maintaining an energy error of ∼ 10−16

1−𝑒max
.

The comparison is made with the results from integrating the
secular equations and the results are plotted in figure 5. Simulations
were run in which particles had various values of 𝑖0 representing
belts of different inclinations. Due to the lack of dependence of the
scaled pericentre on Ω0 shown in figure 4, this was set to Ω0 = 0 for
these simulations. For each N-body integration the values of 𝜔0 and
𝑒0 were chosen such that they corresponded to those that gave the
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Figure 4. Minimum scaled pericentre as a function of initial inclination 𝑖0 and longitude of ascending node Ω0. The colour bar shows the value of 1 − 𝑒max. To
eliminate the dependence on the angles, for each value of 𝐼0 and Ω0 the maximum eccentricity was calculated using 100 randomly chosen values of 𝜔0 and a
Rayleigh distribution of 𝑒0 centred on 0.03. From the 100 results the maximum achievable eccentricity was taken and plotted.

lowest scaled pericentre in the secular integrations. The maximum
eccentricity is then found for each simulation and compared to
the same result found by integrating the secular equations. Each
N-body integration was performed three times with different particle
semi-major axes and a different eccentricity of the perturber. This
is done so that the evolution can be followed for 𝜖 values of 0.001,
0.01 and 0.1. The parameter values used to produce each octupole
strength are listed in table B1 and were chosen to make sure that
the test particle would not be captured by the companion due to a
close approach or experience other forms of orbital evolution such
as resonance (Naoz & Silk 2014).

Figure 5 shows that the results obtained when solving the secular
equations agree very well with those from the N-body simulation for
the case 𝜖 = 0.001, but that there is some disagreement with the other
octupole strengths. This is probably due to the chaotic nature of the
problem and the parameter space in 𝜔0 and 𝑒0 not lining up exactly
between secular integrations and N-body simulations. However, we
note that the general behaviour, a severe drop in scaled pericentre,
is still observed for a window of inclinations around 90◦. In fact,
our work will only be interested in using scaled pericentres down to
values of 10−4 and to this level the N-body simulations and secular
integrations show good agreement.

2.4 Fraction of Belt Mass Excited to High Eccentricities

Arguably the most important parameter space exploration needed
for the Monte Carlo model is the fraction of planetesimals in a belt
that will reach low enough scaled pericentres to cause the transits
seen in KIC 8462852 as a function of the mutual inclination between
belt and companion. This is because, in the model, belts will have a
wide variety of inclinations relative to their companion stars and it is
therefore important to know not only whether or not it is possible for
planetesimals to reach small pericentres, but also how many of them
reach these as it is not initially clear from the equations governing
the secular evolution, and so we investigate it here.

Katz et al. (2011) provide a theoretical equation that relates the
inclination above which planetesimals reach ‘small’ scaled pericen-
tres (the level of which is undefined) 𝑖crit to the value of the octupole
strength 𝜖 . From this one might theoretically assume that the frac-
tion of objects in a belt reaching a threshold value of the scaled
pericentre is a step function with its transition at 𝑖crit, though this is
not initially obvious. In order to investigate whether this is the case,
we integrate the secular equations for 1000 particles with randomly
distributed values of Ω0 and 𝜔0 and a Rayleigh distribution of ec-

centricities centred on 0.03. This was done for a set of inclinations
that are equally spaced in log10 (90 − i) and different values of 𝜖 .
The fraction of orbits reaching a scaled pericentre less than 10−2

(i.e., 𝐹 (𝑞′ < 10−2)) is plotted in figure 6. The behaviour is roughly
equivalent to a step function where, above some 𝑖crit, all objects in a
belt will reach the required threshold scaled pericentre 𝑞′crit = 10−2

and we fit the data with a tan−1 formula of the form

𝐹 (𝑞′ < 10−2) = 1
2
−

tan−1
(

imid−i
𝜎

)
𝜋

, (9)

where 𝑖mid and 𝜎 are the parameters of the fit and 𝑖mid is the
inclination at which 50% of all planetesimals in the belt reach scaled
pericentres less than 10−2 (i.e. 𝐹 (𝑞′ < 10−2) = 0.5). The fits and
their comparison to the data are shown for a select sample of 𝜖
values in figure 7.

The values of 𝑖mid for our fits are plotted as a function of 𝜖 in
figure 8. Comparing with the theoretical prediction from Katz et al.
(2011) (blue curve) shows that the equation provides the correct
functional form for the dependence on 𝜖 . However, the theoretical
prediction is systematically offset towards higher inclinations which
is due to the fact that this equation is not associated with a specific
threshold value of the scaled pericentre, only that it is ‘quite small’.
It is expected that, by decreasing 𝑞′crit by orders of magnitude, this
systematic offset would be reduced. Figure 8 also shows the value
of the critical inclination needed to reach a scaled pericentre of
10−2, when solely considering the SKM case (orange dot-dashed
line). This shows that, for 𝜖 < 10−3, the behaviour tends towards
the standard Kozai-Lidov mechanism where the initial inclination
needed to reach a maximum eccentricity of 𝑒max is given simply by
equation 7.

Plotted in black in figure 8 is a fit to the values of 𝑖mid (𝜖). A
quadratic form is fitted, capped at the value expected from the stan-
dard Kozai-Lidov mechanism, with a best fit found to be

𝑖mid = 𝐴1𝜖
2 + 𝐵1𝜖 + 𝐶1, (10)

where 𝐴1 = 3237.4, 𝐵1 = −723.5 and𝐶1 = 84.8 and 𝜇 is in degrees.

In addition to fitting a functional form for the fraction of planetesi-
mals in a belt that reach a scaled pericentre of 10−2, it is necessary
to examine how many planetesimals reach other, smaller scaled peri-
centres. This is because belt objects in the Monte Carlo model will be
required to reach a physical pericentre to produce an observational
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Figure 6. Fraction of planetesimal orbits that reach a scaled pericentre of
at least 10−2 as a function of 𝑖 and 𝜖 . Each point corresponds to 1000
integrations of orbits with uniformly distributed values of 𝜔0 and Ω0 and a
Rayleigh distribution of 𝑒0 centred on 0.03.
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Figure 7. The fraction of randomly distributed orbits reaching a scaled peri-
centre less than 10−2 as a function of initial inclination for a select few values
of 𝜖 and the fitted tan−1 functions as a comparison.
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Figure 8. The values of 𝑖mid from the tan−1 fits to the curves in figure 6 as
a function of 𝜖 (scatter points). The theoretical prediction from equation ref
is also included for comparison (blue curve). The inclination expected when
solely considering the SKM is plotted as the dot-dashed orange line. The
quadratic fit to the data capped at the SKM value is shown as the black line.

signature like Boyajian’s star and as these belts will be at different
radii this will translate into different scaled pericentres for each belt
(see equation 6). Figure 9 illustrates the best fit values of 𝑖mid for
simulations where particles were required to reach scaled pericen-
tres of 10−2, 10−3 and 10−4. The coefficients for the quadratic fit for
the 10−3 and 10−4 cases are: 𝐴1 = 4711.3, 𝐵1 = −928.9, 𝐶1 = 90.0
and 𝐴1 = 4443.9, 𝐵1 = −916.2, 𝐶1 = 90.7 respectively.

2.5 Summary

In order to run a Monte Carlo model of planetesimal belts in mis-
aligned wide binary systems it is necessary to know how the belts
behave in these environments. This section has shown that, due to
the EKM, large eccentricities can be reached by belt particles if the
misalignment between belt and companion star is large enough. It
has also shown that, when this is the case, a large fraction of belt
particles reach these small scaled pericentres and has produced equa-
tions for the fraction that reach 𝑞crit as a function of inclination and
the octupole strength 𝜖 .
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Figure 9. The best fit values of 𝑖mid from fitting arctan functions to the
fractions of planetesimals reaching scaled pericentres less than 10−2, 10−3

and 10−4 respectively. The black curve represents the theoretical result.

3 MONTE CARLO MODEL

3.1 General Setup

The purpose of the Monte Carlo model is to find the expected
occurrence rate of Boyajian-like stars ⟨𝑁exp⟩ which are defined to
be those that will have had planetary material undergo Kozai-Lidov
oscillations and migrate close to the star such that they are currently
producing a visible signature in the form of deep, irregular, aperiodic
exocomet transits. Comparing this occurrence rate to the one system
in the Kepler field will yield a probability that the ‘Kozai-Lidov
induced eccentric exocomet’ hypothesis is correct.

In the model, 108 stellar systems with planetesimal belts are gen-
erated, some fraction of which are binaries, whose values of the belt
semi-major axis 𝑎b, companion semi-major axis 𝑎c, companion ec-
centricity 𝑒c, host star mass 𝑀∗ and companion star mass 𝑀c are
drawn from distributions such that the population will accurately re-
flect the Kepler field. Some fraction 𝑓reject of them are rejected and
cut from the sample as the EKM is prohibited from acting due to one
of several physical reasons outlined in section 3.6. Every system in the
model is assumed to have a belt of planetesimals around each com-
ponent of the binary with semi-major axis 𝑎b and width Δ𝑎 = 1

2𝑎b.
The objects in the belt are assumed to undergo a collisional cascade
by which larger objects collide and fragment into smaller objects and
the very smallest are blown out of the system by radiation pressure.
The orbits of large planetesimals in the belt are assumed to evolve
due to secular interactions with the binary companion and so can,
depending on the inclination of their orbit relative to the binary, mi-
grate to small pericentres. In order to reach the roughly sub au scales
associated with the transits of KIC 8462852, we require particles to
achieve a pericentre less than 10−1au and hence a scaled pericentre
less than

𝑞′crit <
0.1
𝑎b/au

. (11)

The presence of planetesimals at these small distances could result
in an observational ‘signature’ like that for KIC 8462852 which is
assumed to last for a set amount of time 𝑡dur, whose true value is
unknown and is therefore a free parameter of the model. The fraction
of the system lifetime during which this light curve signature is
observable, 𝑓t, can be calculated for each system and the mean over all

systems in the model 𝑓t can then be found. Only some of the randomly
oriented planetesimals’ orbits will cross the line of sight and hence
have the right geometry for their dust clouds to be observationally
detectable from Earth; the probability that a planetesimal’s orbit
causes its enveloping dust cloud of radius 𝑅c to occult the stellar disc
as seen from Earth is 𝑃geo and is given by

𝑃geo =
𝑅∗ + 𝑅c

2𝑞
≈ 𝑅∗

2𝑞
, (12)

where it is assumed 𝑅c ≪ 𝑅∗, 𝑅c and an average has been taken
over all pericentre angles (Winn 2010).

These quantities combine to form the expected probability for a single
star to be seen to undergo this behaviour

𝑝 = (1 − 𝑓reject) 𝑓t𝑃geo, (13)

such that the expected number of stars in the Kepler field seen to
exhibit this phenomenon is

⟨𝑁exp⟩ = 1 − (1 − 𝑝)𝑁kep ≈ (1 − 𝑓reject) 𝑓t𝑃geo𝑁Kep, (14)

where the last relation holds if 𝑝 ≪ 1.

3.2 Finding 𝑓t

The observations of KIC 8462852 are consistent with being caused
by the breakup of a large 𝑚crit ≳ 10−6𝑀⊕ planetesimal. Therefore,
within our model, we are only interested in the number of similar
sized objects in the belt at the time small pericentres are reached
𝑁 (𝑚 > 𝑚crit; 𝑡 = 𝑡oct) as they will cause transits of similar depth
to KIC 8462852; the rest of the objects in the belt are ignored. The
fraction of these objects 𝐹 (𝑞′ < 𝑞′crit), that reach small enough
pericentres is found using the results of section 2.4 (figure 9), where
we calculate values of 𝐹 (𝑞′ < 𝑞′crit) by interpolating between the
values for 𝑞′crit = 10−2, 10−3 and 10−4. For that fraction that reach
𝑞′crit, they are assumed to produce an observable signature that lasts
for 𝑡dur Myr which is a free parameter. Hence, the total fraction of
the main sequence lifetime during which transits could be observed
is

𝑓t =
𝐹 (𝑞′ < 𝑞′crit)𝑁 (𝑚 > 𝑚crit; 𝑡 = 𝑡oct)𝑡dur

𝑡MS
. (15)

However, if the system has enough bodies more massive than𝑚crit
then the transits due to different objects will end up overlapping and
eventually the transits will saturate. In this case the fraction of the
lifetime where transits are observable is instead given by

𝑓t =
(𝑡oct,lower − 𝑡oct,upper) + 𝑡dur

𝑡MS
, (16)

where the numerator represents the range of time for which planetary
material from any part of the belt will be at small pericentres. This
implicitly assumes that all the material that will migrate to small
pericentres will do so on the first octupole cycle and will stay there
for 𝑡dur until it is removed from the system. For each system in the
model both the saturated and unsaturated values of 𝑓t are calcu-
lated and the smaller of the two is adopted as the value for that system.
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As can be seen from equations 15 and 16, in order to calculate 𝑓t, it
is necessary to know the main sequence lifetime of the system. This
is taken from the mass using the homology relation

𝑡MS =

{
10000 𝑀−9/2

∗ for 𝑀∗ < 1.5 𝑀⊙
3630 𝑀−2

∗ for 𝑀∗ > 1.5 𝑀⊙
(17)

where 𝑡MS is in Myr and 𝑀∗ in 𝑀⊙ . In the saturated case it is nec-
essary to know the octupole timescale for the belt which is given by
equation 5 but to illustrate the dependence on the orbital parameters
of the problem, we rewrite it in the form given by Liu et al. (2015a)
and used by Metzger et al. (2017) as

𝑡oct = 40
(

𝑀∗
1.43𝑀⊙

) (
0.4𝑀⊙
𝑀c

) ( 𝑎b
20au

)−2 ( 𝑎c
1000au

)7/2 (1 − 𝑒2
c )2

𝑒0.5
c

Myr.

(18)

The timescale for planetesimals in a disc at a radius 𝑎b to be
excited to small enough pericentres is taken to be the value of 𝑡oct
at the central disc radius, however the upper and lower edges of
the disc will have timescales of 𝑡oct,upper and 𝑡oct,lower respectively
which are given by replacing 𝑎b with 𝑎upper =

5
4𝑎b and 𝑎lower =

3
4𝑎b

respectively in equation 18.

In the unsaturated case it is necessary to know the number of
particles greater than a certain mass at the time the belt undergoes
the EKM 𝑁 (𝑚 > 𝑚crit; 𝑡 = 𝑡oct). In order to do this the mass of the
belt must be known and this requires a collisional model of the belt.

3.3 Collisional Model

A population model for belts around main sequence sun-like stars
that accounts for collisional evolution was developed by Wyatt et al.
(2007) and its free parameters were constrained by comparing with
the infrared emission detected from nearby stars (Sibthorpe et al.
2018). In this model, it is assumed that all stars are born with a
planetesimal belt whose masses 𝑀b are drawn from a log-normal
distribution centred on 𝑀mid which is a free parameter. These belts
orbit a host star of mass 𝑀∗ at semi-major axis 𝑎b and have a black-
body radius 𝑅bb, drawn from a power law distribution with exponent
𝛾 within the range 1 < 𝑅bb/au < 1000, i.e.

𝑃(𝑅bb) ∝
{
𝑅
𝛾

bb 1 < 𝑅bb/au < 1000
0 Otherwise.

(19)

In this model these belts are assumed to undergo collisional evo-
lution where large bodies that have been stirred onto crossing orbits
will collide and catastrophically disrupt to form smaller bodies. The
planetesimals have a diameter D which varies between the maximum
size𝐷c which is set by planet formation processes when the system is
born, and the blowout size 𝐷bl at which radiation pressure puts dust
grains onto unbound orbits. Planetesimals in the belt are assumed to
have a size distribution of the form

𝑛(𝐷) = 𝐾𝐷−𝛼, (20)

where 𝛼 is 3.5 in an infinite collisional cascade (Dohnanyi 1969)
and K is a normalisation constant. Assuming that the mass is the
only significant time variable quantity, then the disc mass evolves
according to

𝑀 =
𝑀 (0)

1 + 𝑡/𝑡c (0)
, (21)

where 𝑡c (0) is the initial collisional timescale of the largest bodies
in the belt. Assuming that particles have a Rayleigh distribution of
eccentricities with means ⟨𝑒⟩ = ⟨𝑖⟩, and that the fractional size of
an object that will catastrophically destroy a planetesimal 𝑋c ≪ 1,
Wyatt et al. (2007) find that the mass of a disc at times 𝑡age >> 𝑡c (0)
is given by

𝑀 = 1.4 × 10−9𝑟13/3 (𝑑𝑟/𝑟)𝐷c𝑄
∗
D

5/6⟨𝑒⟩−5/3𝑀−4/3
∗ 𝑡−1

age, (22)

where𝑄∗
D is the dispersal threshold of a planetesimal, ⟨𝑒⟩ is the peak

of the distribution of eccentricities, 𝑑𝑟 is the width of the belt, 𝐷c is
the maximum size of planetesimal and 𝑡age is the age of the system.
This can be expressed more simply as

𝑀 = 𝑀
−4/3
∗ 𝑡−1

age𝑟
13/3𝑀mid𝐴/𝐵, (23)

where 𝐴 = 𝐷
1/2
c 𝑄∗

D
5/6𝑒−5/3 and 𝐵 = 𝐷

−1/2
c 𝑀mid. A similar

equation that also depends on A and B can be found for the fractional
luminosity of these discs (assuming black body emission) and
the population model was compared to observations of fractional
excesses of nearby systems by Sibthorpe et al. (2018). This enabled
best fit values for the parameters A, B and 𝛾 which could be
well constrained, albeit with some degeneracy, since varying 𝐵

changes the initial fractional luminosity distribution that belts
are born with and varying 𝐴 changes the fractional luminosity
distribution at late times. Sibthorpe et al. (2018) find best fit values
of 𝐴 = 5.5×105km1/2J5/6kg−5/6, 𝐵 = 0.1𝑀⊕km−1/2 and 𝛾 = −1.7
and these values of A and B are used in the equation for the masses
of our belts 23 and the value 𝛾 is the exponent in our power law
distribution of belt radii.

Using the model of Wyatt et al. (2007) with the above best fit
values, the corresponding total mass in the belt 𝑀bb at the time when
the EKM excites planetesimals to small pericentres, 𝑡oct, can be found

𝑀bb = 1.75 × 10−7𝑅13/3
bb 𝑡−1

oct𝑀mid, (24)

where 𝑀bb and 𝑀mid are in 𝑀⊕ , 𝑅bb is the black body radius of the
belt in au and 𝑡oct is in Myr. The population model of Sibthorpe et al.
(2018) was fitted to the distribution of infrared excesses of nearby
stars and hence constrain the distribution of temperatures of discs in
the population which are assumed to emit like the blackbody of the
temperature appropriate for their radius. This is why the blackbody
radius is used in equation 24 and the belt mass is correct assuming
blackbody emission. However, since dust grains emit inefficiently
in a manner dependent on their size and composition (Krivov et al.
2006), discs are hotter than expected for their radius which means
the distribution of these disc radii is likely to be different to that of
their black body radius. Pawellek & Krivov (2015) found that the
blackbody radius of a debris disc 𝑅bb derived from fitting SEDs
does not exactly match the physical radius from resolved millimetre
images 𝑅mm, which we identify with 𝑎b, but instead differs by a
factor 𝑅mm = Γ𝑅bb which depends on the luminosity of the disc
hosting star. As the belt’s radius is increased by a factor of Γ, the
mass must be increased by a factor of Γ2 in order to maintain the
same distribution of fractional luminosities. This is equivalent to the
argument that the cross-sectional area has decreased by a factor𝑄−1

where 𝑄 is the absorption efficiency of dust particles averaged over
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the dust temperature, this is assumed to be constant and is equivalent
to Γ−2. Thus, the true maximum mass of belts in this model is given
by

𝑀max = 1.75 × 10−7Γ2𝑅13/3
bb 𝑡−1

oct𝑀mid. (25)

The most recent analysis shows that the best fitting functional form
of Γ is given by (Pawellek et al. 2021)

Γ = 2.92
(
𝐿∗
𝐿⊙

)−0.13
, (26)

and, for this model, we follow the methodology of Pearce et al.
(2022) which uses equation 26, capped at a maximum value of 4, to
convert 𝑅bb to 𝑅mm. However, in order to make use of equation 26,
the luminosity of each star in the sample must be known and
hence it is assumed that the sample stars follow the power law
Mass-Luminosity relation given in Eker et al. (2015) and expanded
upon in Eker et al. (2018).

Equation 25 is only valid at 𝑡 ≫ 𝑡coll, i.e. at times greater than the
collisional lifetime of objects in the belt. At earlier times, the belt
has not begun to collisionally deplete and no small dust has been
produced and blown out of the system by radiation pressure. Thus,
at these early times, belts will retain their initial mass 𝑀init = 𝑀mid
and so we adopt the following formalism for the mass of belts at a
time 𝑡oct

𝑀b = 𝑚𝑖𝑛(𝑀max, 𝑀mid). (27)

Using this formalism for the mass of the belt, the number of objects
with masses greater than 𝑚crit at 𝑡oct, 𝑁 (𝑚 > 𝑚crit; 𝑡 = 𝑡oct), can
be found. Using equation 20 we can write the number of objects per
unit belt mass with a mass between 𝑚 and 𝑚 + 𝑑𝑚 as

𝑛(𝑚)
𝑀b

=
1
6
𝑚
−1/6
max 𝑚

−11/6, (28)

where 𝑚max is the mass of the largest object of diameter 𝐷max.
Integrating this expression we find that the number of objects with a
mass greater than 𝑚crit per unit belt mass (𝑛′c) is

𝑛′c =
𝑁 (𝑚 > 𝑚crit)

𝑀b
=

1
5

[
(𝑚max𝑚

5
crit)

−1/6 − 𝑚−1
max

]
, (29)

where 𝑚crit and 𝑚max are in 𝑀⊕ .

3.4 Incorporating the Collisional Model

Now that we have a collisional model for the belt mass we can return
to our formalism for 𝑓t and elucidate its dependence on the physical
variables of the system and the different regimes it can lie in. Taking
the simpler case, in the saturated regime, we can substitute equation
18 into equation 16 replacing 𝑎b with 𝑎b + Δ𝑎b/2 and 𝑎b − Δ𝑎b/2
for 𝑡oct,upper and 𝑡oct,lower respectively. This leads to the following
equation for 𝑓t

𝑓t =
1280
9𝑡MS

(
𝑀∗

1.43

) (
0.4
𝑀c

) ( 𝑎c
1000

)7/2 (1 − 𝑒2
c )2

𝑒
1/2
c

( 𝑎b,mid
20

)−2
+ 𝑡dur
𝑡MS

.

(30)

In the unsaturated case, assuming the belt mass has not been
capped at its upper limit of 𝑀mid, we can substitute equations 25 and
29 into equation 15. This yields the following for 𝑓t

𝑓t = 1.1 × 10−10 𝑛
′
c𝑡durΓ

−7/3𝐹 (𝑞′ < 𝑞′crit)
𝑡MS

(
1.43
𝑀∗

) (
𝑀c
0.4

)
( 𝑎c
1000

)−7/2 𝑒
1/2
c

(1 − 𝑒2
c )2

𝑎
19/3
b,mid.

(31)

3.5 Input Distributions

Having developed a model that will calculate the expected number
of Boyajian-like stars in the Kepler field, it is important that the dis-
tributions of the input parameters also match observations to give a
realistic output. Section 3.5.1 contains the stellar mass distribution,
section 3.5.2 the belt radius distribution, section 3.5.3 the binary
semi-major axis distribution and 3.5.4 the binary eccentricity distri-
bution.

3.5.1 Stellar Masses

One important property of stars in the model is their mass, since both
the timescale for the EKM interaction and the main sequence lifetime
of the system depend on it, both of which affect 𝑓t. Higher mass stars
have much shorter lifetimes than lower mass stars so there will be
less opportunity for their discs to undergo Kozai-Lidov oscillations
before the stars end their lives, though those that do spend a greater
fraction of their lifetime doing so than an equivalent lower mass star.
In order to compare our results with the Kepler field we use the
observed mass distribution for this set of ∼ 200, 000 stars. The mass
distribution of the Kepler field from which the masses of the primary
stars,𝑀∗, are drawn is shown in figure 10. For the secondary stars, we
instead draw masses, 𝑀c, from a random distribution between values
of 0 and 𝑀∗ for each binary pair. Figure 10 shows the resultant
total mass distribution which is different from that of the Kepler
field. Though different, the primary star masses follow the Kepler
distribution and secondary stars are mostly sub-solar M-dwarfs which
might not have been resolved or detected by Kepler (as was the case
for KIC 8462852). It is possible to make the total distribution of
masses which is identical to the Kepler distribution by picking both
primary and secondary masses from such a distribution, but this does
not produce a uniform distribution of mass ratios nor is it consistent
with observations of binary stars (Raghavan et al. 2010).

3.5.2 Belt Semi-Major Axis

Planetesimal belts can have a range of radii as can be seen from our
own system, with belts at ∼ 3 au and ∼ 30 au, whilst exoplanetary
systems have been found to host belts that are quite massive and
can extend to hundreds of au (Matthews et al. 2010) and this range
must be incorporated into the model. As an equation for the mass of
belts was used from Sibthorpe et al. (2018) which assumed a power
law distribution of debris disc radii, the same radius distribution
must also be used here for consistency. The power law exponent
(equation 19), whose best fit value was found to be -1.7, cannot be
altered without also altering the best fit values for A and B in equa-
tion 23 in a consistent manner which is beyond the scope of this work.

The best fit value of this exponent is such that there are more belts at
small radii than large, this is because lots of belts at small radii were
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Figure 10. Mass distribution of the primary stars (blue) and the total sample
including secondaries (orange). It is a combination of the distribution of the
Kepler field plus lower mass companions that correspond to unobserved M-
dwarfs like that of the companion of KIC 8462852. The lowest mass star is
0.086𝑀⊙ and the highest mass is 3.7𝑀⊙
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Figure 11. Histogram of the initial belt radii 𝑎b in the model (blue) and
those that remain after imposing the cuts outlined in section 3.6 (orange).
The discontinuity in the pre-cut sample is due to the conversion between the
blackbody radii and true radii as the conversion factor is capped at a maximum
of 4 (see equation 26 and section 3.3).

needed in Sibthorpe et al. (2018) to account for the fact that only 20%
of stars had an infrared excess. As every star was assumed to host
a belt in this analysis, most of the population had to have close-in
belts that would collisionally deplete fast enough such that most stars
would have no detectable excess from a belt and this is reflected in
the initial distribution of blackbody radii shown in figure 11

3.5.3 Wide Binary Semi-Major axis

Around 50% of solar-like stars in the local galaxy are gravitationally
bound to other stars (Duchêne & Kraus 2013; Moe & Di Stefano
2017; Duquennoy & Mayor 1991; Raghavan et al. 2010). The
most common configuration is a binary pair which have a wide
distribution of possible semi-major axes that can be wide (100s to
1000s of au) or close (1-10s of au), though higher order hierarchical
systems such as triples and quadruples also exist. Despite the
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Figure 12. Histogram of the initial companion semi-major axes 𝑎c in the
model (blue) and those that remain after imposing the cuts outlined in sec-
tion 3.6 (orange).

obvious hindrance of the gravitational pull of a second body,
multiple systems seem to be remarkably resilient when it comes to
planet formation. Planets have been found both orbiting both stars
in a close pair (P-type/circumbinary), e.g. Kepler-16 (Doyle et al.
2011) and also around one star in wide pair (S-type/wide binary
planet) e.g. Kepler-444A (Campante et al. 2015). In addition to
planets, planet-forming discs have also been detected around binary
stars (Kennedy et al. 2012). Therefore, it can be expected that,
especially in wide binary systems where the star is far away and its
perturbation smaller, planetesimal belts will still exist around each
star. Indeed, studies have shown that planetesimal belt formation is
only suppressed by intermediate binaries (10s to 100s au) (Yelverton
et al. 2019a).

In the Monte Carlo model it is assumed that 30% of the stars
are binaries and, of those that are, a log-normal period distribution
centred on 105 days is used as found observationally by Raghavan
et al. (2010). This period distribution is combined with the mass
distribution described in section 3.5.1 to give the semi-major axis
distribution shown in blue in figure 12.

3.5.4 Wide Binary Eccentricity

Wide binaries are thought to form through core fragmentation or
dynamical capture and, due to the nature of these formation mech-
anisms, a wide distribution of eccentricities is expected (Bate et al.
2003). There are currently two competing interpretations of the data
on wide binary eccentricities: that they have a thermal distribution
where 𝑃(𝑒) ∝ 𝑒 (Tokovinin & Kiyaeva 2016) or a uniform distribu-
tion as argued for by Raghavan et al. (2010). Although surveys of the
widest binaries are biased against the highest eccentricities, in order
to be consistent with the sourcing of the semi-major axis distribu-
tion from Raghavan et al. (2010), we adopt the uniform eccentricity
distribution in our model but check that the results do not change
significantly when using a thermal distribution.

3.6 Cuts to Initial Distribution

In order to analyse the Monte Carlo model effectively, it is important
to identify and remove systems where our setup is incompatible
with a belt of particles undergoing Kozai-Lidov oscillations. These
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systems can then be cut from the model to leave only those that are
capable of this behaviour which will allow us to see the most likely
locations of belts and companions that are experiencing this effect.
There are many reasons why a system might not be able to undergo
Kozai-Lidov oscillations and the specific reasons examined here are:
the companion star is too close to the belt and causes chaotic motion
of disc particles (section 3.6.1), the companion star’s orbital period
is comparable to the timescale for secular evolution thus invalidating
the equations of motion (section 3.6.1), the belt is too close to its
host star such that GR effects shut off the Kozai-Lidov mechanism
(section 3.6.2), the stars leave the main sequence before objects reach
small pericentres (section 3.6.3), and the lack of any companion star
at all (section 3.6.4). The combined effect of these cuts is to reject a
fraction 𝑓reject = 0.986 of the initial systems in the model.

3.6.1 Star-Belt Separation

Not all separations between a companion star and a planetesimal belt
will lead to Kozai-Lidov oscillations. The mechanism is hierarchical
in nature, so systems where the companion star is too close to the
belt will not experience this effect. The peak of initial values of
𝑎c as shown in figure 12 is located at ∼ 10 au. The distribution
of 𝑎b, meanwhile, shows closer in belts are more common (∼ 1
au). However, there is some overlap of far-out belts with close-in
companions and these are not nearly hierarchical enough for the
EKM to take effect. This is not to say that particles will not reach
very small pericentres through some other mechanism, secular chaos
or scattering for example (O’Connor et al. 2022; Yoshikawa 1990),
however this Monte Carlo model has been set up to specifically
examine the EKM effect due to wide binary companions and thus
any system that cannot undergo this phenomenon is excluded.
This will include all systems where 𝑎c < 𝑎b,upper, i.e. where the
companion star is within the belt and where the belt is outside
the star (e.g. a P-type binary) and 53% of the systems satisfy this
condition. Also excluded is the case where the star is outside the
belt but sufficiently close to expose the disc particles to chaotic
evolution. The formula for the semi-major axis below which this
occurs is given by equation 1 in Holman & Wiegert (1999), this is
proportional to 𝑎c with the proportionality factor depending only
on the eccentricity of the companion star and the masses of both
bodies. 24% of all systems in the model have belts located in the
chaotic zone of their companions.

Further to this, the K-L mechanism is a secular effect and this
approximation requires that the timescale for the secular effect is
greater than the orbital periods of the bodies in the system; this
translates to the requirement that the smallest secular timescale
𝑡quad be much larger than the largest orbital period 𝑡orb,comp and for
this analysis we cut any system where 𝑡quad < 10𝑡orb,comp which
corresponds to 18.9% of systems.

The cut on the secular timescales imposes a relation between the
variables of the model that will bound the results of later calculations.

Using equation 4 for 𝑡quad and 𝑡orb,comp = 10−6
√︂

𝑎3
c

𝑀∗
Myr, then by

requiring 𝑡orb,comp
𝑡quad

= 10−1 we get the relationship at the boundary of
the cut

𝑎c ≈ 0.158
(
𝑀c
𝑀∗

)2/3
(1 − 𝑒2

c )−1𝑎b. (32)

3.6.2 General Relativity

The effect of General Relativity is to induce a pericentre precession
in any planetesimals which increases in strength closer to the host
star; if this is stronger than the precession due to the EKM, it will
dominate and the EKM will not manifest. The strength of general
relativistic effects can be approximated in Newtonian gravity as a
perturbation term that falls off with distance as 𝑟−3, thus only belts
that are sufficiently close to their host stars, and with sufficiently
distant companions, will experience this shut off. Hamilton & Rafikov
(2021) derive an 𝜖GR analogous to that for the EKM given by

𝜖GR = 𝐵
𝑎3

c𝑀
2
∗

𝑎4
b𝑀c

, (33)

where B is 1×10−8 such that masses are in 𝑀⊙ and semi-major axes
are in au. We can then impose the cut 𝜖GR < 1 such that Kozai-Lidov
evolution is not shut off by General Relativity. This cut removes
the systems with the closest belts and the furthest companions and
4.8% of the initial sample violates this criterion. Using equation 33
and requiring 𝜖GR = 1 at the boundary of the cut, we can obtain
the following relation between the parameters of the systems at this
boundary

𝑎c =

(
1
𝐵

𝑀c

𝑀2
∗

)1/3
𝑎

4/3
b . (34)

However, this analysis only excludes discs whose precession due
to GR is greater than that of the EKM in their initial low eccentricity
state and hence will not deviate from a belt structure at all. There will
be some belts in the model where this is not true and the particles in
these belts will begin to evolve to higher eccentricities. However, the
pericentre precession due to GR depends on the pericentre distance,
𝑞, as well as the semi-major axis and hence the precession rate due to
GR will increase during their evolution and eventually eclipse that of
the Kozai mechanism. While the particles in these belts reach high
eccentricities, some of them may not meet the threshold eccentricities
to start producing strange Boyajian star-like light curves before GR
takes over (i.e they do not reach 𝑞′ < 𝑞′crit) and these systems must
also be rejected from the sample. To do this we use equation 51
from Liu et al. (2015b) which gives the minimum scaled pericentre
achievable due to GR, 𝑞′min,GR, as

√︃
𝑞′min,GR (2 − 𝑞′min,GR) =

1
9

(
4𝜖GR +

√︃
16𝜖2

GR + 135 cos2 (𝑖0)
)
(35)

and those systems which cannot achieve the required scaled pericen-
tre (i.e. 𝑞′min,GR > 𝑞′crit) are removed from the model.

3.6.3 System Age

The octupole timescales of the systems initially drawn from our dis-
tributions, given by equation 18, span many orders of magnitude. The
systems with a calculated 𝑡oct that is implausibly small are removed
by the cut that requires the orbital timescale to be much smaller than
the secular timescale. The systems with 𝑡oct so large that they would
never undergo Kozai-Lidov evolution in the lifetime of the universe
also get removed from the model as they fall within the GR cut.
These cuts still leave a variety of octupole timescales ranging from
105 − 1012 years. We exclude systems that do not undergo Kozai-
Lidov oscillations before the star turns off the main sequence and
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evolves into a white dwarf as we want to compare with observa-
tions of main sequence stars in the Kepler field. Thus we require
that 𝑡oct ≤ 𝑡MS and 4.5% of the initial systems violate this criteion.
This imposes another relation between the system parameters at the
boundary of the cut which can be found by setting 𝑡oct (given by
equation 18) equal to 𝑡MS and is given by

𝑎c = 1000

(
𝑡MS

16000

(
1.43
𝑀∗

) (
𝑀c
0.4

)
𝑒

1/2
c

(1 − 𝑒2
c )2

)2/7

𝑎
4/7
b . (36)

We also remove all systems whose octupole timescales are smaller
that 10 Myr; this is because at earlier times the system is still in its
planet formation stage and has a protoplanetary disc. Studies have
shown that the action of the Kozai-Lidov mechanism on such a
disk causes eccentric gas and dust ring formation (Martin & Lubow
2022). However, it is unclear if any massive and highly eccentric
planetesimals that are uncoupled to the gas would be able to produce
a KIC 8462852-like signature given the surrounding gas will have
a non-negligible optical depth. As this scenario is uncertain, we
exclude it from our analysis. 88% of systems in the model have
octupole timescales shorter than 10 Myr and thus violate this cut.

3.6.4 Binarity Fraction

As evidenced by our own solar system, not every star is in a binary pair
and hence the fraction of stars that are in binaries needs to be included.
Stellar surveys show that the general binarity fraction for FGK stars
that dominate the Kepler sample is about 30% (see Duchêne & Kraus
(2013) and references therein). Imposing this final cut, along with all
the previous cuts from sections 3.6.1, 3.6.2 and 3.6.3 leads to 98.6%
of all initial systems in the model being removed, leaving only 1.4%
of the initial systems to undergo Kozai-Lidov oscillations if they have
the correct orientation.

4 RESULTS

The main output of the Monte Carlo model is 𝑓t which is the mean
value of the fraction of the main sequence lifetime that a system
spends with large objects at small pericentres causing an observa-
tional signature and is found to be 𝑓t = 2.7 × 10−4 for 𝑡dur = 100
yr. This value is a mean over the entire sample and sections 4.1, 4.2
and 4.3 will elucidate its origin with respect to the main parame-
ters of the model: 𝑎b, 𝑎c, 𝑀∗ and 𝑡oct. Unless otherwise stated, all
calculations and plots assume 𝑡dur = 100 yr.

4.1 Dependence of 𝑓t on semi-major axes

The two most consequential parameters in the model are 𝑎b and
𝑎c. Figure 13 shows the number of systems that survive the cuts
of section 3.6 and illustrates the effect of these cuts and the belt
and companion parameters that can potentially cause exocomet
transits via the EKM. It shows that the majority of the systems
have close-in belts with 𝑎b < 10 au and companion separations
between 100 ≲ 𝑎c ≲ 3000 au. As expected, companions with
large belt radius 𝑎b ∼ 100 au but small companion separation
𝑎c ∼ 100 − 1000 au are removed due to the secular timescale
𝑡quad being too similar to the orbital timescale of the companion
𝑡orb. As can be seen from equation 32, this translates to a lower
bound on 𝑎c of the form 𝑎c ∝ 𝑎b which is seen sculpting the
lower edge of the population in figure 13. Similarly, close-in belts
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Figure 13. 2D histogram of the belt radii and companion semi-major axis
for every the systems that survived all the cuts. The orange line shows the
boundary of the parameter space due to GR, found by substituting equation 34
into 31 and using 𝑡MS = 10 Myr, 𝑒c = 0.1, 𝑀c = 1𝑀⊙ and 𝑀∗ = 1𝑀⊙ . The
green line shows the boundary of the parameter space due to the timescale for
secular quadrupole oscillations being 10 companion orbital timescales using
𝑀∗ = 3𝑀⊙ , 𝑀c = 0.1𝑀⊙ and 𝑒c = 0.1. The artefact at 𝑎b = 4 au is due to a
majority (but not all) of the systems having a true radii that are the maximum
of 4 blackbody radii according to the prescription laid out in section 3.3

(𝑎b ∼ 1 − 10 au) and distant companions 𝑎c ∼ 1000 − 10000 au are
removed because the precession due to GR is greater than that of the
Kozai-Lidov mechanism. This imposes another lower bound of the
form 𝑎c ∝ 𝑎

4/3
b and this can clearly be seen in figure 13 plotted as

the red bounding line.

In order to understand where the mean value of 𝑓t comes from, it
is important to first examine how it depends on the variables of the
model. Figure 14 shows how 𝑓t depends on the belt radius 𝑎b for the
belts expected to undergo EKM. The dominant relation seen in the
figure is given by 𝑓t ∝ 𝑎

19/3
b and arises from equation 31 as most

systems are in the unsaturated regime. It shows that the furthest
belts spent most of their life transiting, a direct result of the longer
collisional lifetime, and hence larger masses, of more distant belts
at the time they undergo EKM. The upper bound of this behaviour
(plotted as the upper red line in figure 14) is set merely by the
lifetime of the system and the cuts made to the initial population
have very little effect.

Figure 15 shows how 𝑓t depends on the companion semi-major
axis 𝑎c. Naively, it might be expected that the relationship between
𝑓t and 𝑎c would be given by 𝑓t ∝ 𝑎

−7/2
c as this is what is given by

equation 31 which gave the correct relation between 𝑓t and the belt
radius. This relation can indeed be seen bounding the lower region
of the parameter space in figure 15 as the negatively sloped line.
However, the dominant relation between 𝑓t and 𝑎c is given instead by
𝑓t ∝ 𝑎91/12

c such that 𝑓t increases with companion semi-major axis.
This is not expected from equation 31 as more distant companions
should take longer to destabilise belts which would then have
lost mass through collisions. This result is instead due to the cut
discussed in section 3.6.3, where the EKM timescale must be less
than the main sequence lifetime (𝑡oct < 𝑡MS). This leads to the
relation between 𝑎c ∝ 𝑎4/7

b along the boundary of the cut as seen in
equation 36 which, substituting into equation 31, gives us the relation
𝑓t ∝ 𝑎91/12

c that is seen bounding the upper and lower regions of the
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Figure 14. 2D histogram of 𝑓t and 𝑎b for every system that survived all
the cuts. The red lines indicate the relation between 𝑓t and 𝑎b given by
equation 31 using appropriate values for the other parameters of the system.
The upper bounding line uses 𝑡MS = 200 Myr, 𝑎c = 100 au, 𝑒comp = 0.1 and
𝑀∗ = 𝑀c = 1𝑀⊙ . The lower bounding line uses 𝑡MS = 104 Myr, 𝑎c = 2000
au, 𝑒comp = 0.9 and 𝑀∗ = 𝑀c = 1𝑀⊙ .
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Figure 15. 2D histogram of 𝑓t and 𝑎c for every system that survived all
the cuts. The brown line indicates the relation between 𝑓t and 𝑎c given by
equation 31 using 𝑡MS = 1400 Myr, 𝑎b = 1 au, 𝑒comp = 0.1 and 𝑀∗ = 1𝑀⊙
and 𝑀c = 0.1𝑀⊙ . The two red lines represent the boundary of the parameter
space outside of which 𝑡MS > 𝑡EKM whose limit is given by equation 36. The
upper red line assumes 𝑡MS = 104 Myr, 𝑒comp = 0.9 and 𝑀∗ = 𝑀c = 1𝑀⊙ .
The lower red line assumes 𝑡MS = 10 Myr, 𝑒comp = 0.1 and 𝑀∗ = 1.43𝑀⊙
and 𝑀c = 1𝑀⊙ . The green line represents the edge of the parameter space
below which GR shuts off the EKM whose boundary is given by equation 34
and assumes 𝑡MS = 104 Myr, 𝑒comp = 0.9 and 𝑀∗ = 1𝑀⊙ and 𝑀c = 0.2𝑀⊙ .

parameter space in figure 15. The second lower bound that is the
most important below 𝑎c ∼ 104 au is due to the requirement that the
secular timescale be much longer than the orbital timescales as laid
out in section 3.6.1. As shown by equation 32, this leads the relation
𝑎b ∝ 𝑎c along the boundary and, substituting this into equation 31,
generates the observed relation 𝑓t ∝ 𝑎17/6

b at the lower edge. Hence,
the overall effect of all the cuts made to the initial population is
that the fraction of time a system will spend with large objects
at small pericentres actually increases with 𝑎c rather than decreasing.

Figures 14 and 15 show that systems with more distant belts (up

Figure 16. Mean value of 𝑓t multiplied by the probability for a system to be
in that bin as a function of belt radius 𝑎b and companion semi-major axis
𝑎c such that the sum of the values at each point gives the mean 𝑓t over all
systems in the model. The bin size is 0.03dex2 and the artefact at 𝑎𝑏 = 4 au
is due to a majority (but not all) of the systems having a true radii that are
the maximum of 4 blackbody radii according to the prescription laid out in
section 3.3.

to 103 au) and more distant companion stars (∼ 10000 au) have the
largest values of 𝑓t and hence spend the greatest fraction of their
main sequence lifetime in the ‘transiting’ state. However, this does
not account for the rarity of these systems. Indeed figures 11 and 12
show that most systems have close-in belts (∼ 1 − 10au) and close
companions (∼ 100 − 1000au). These most common systems spend
much less of their lifetime in the transiting state and hence skew the
mean value of 𝑓t to lower values.

It is important, however, to find the most likely systems to be
observed, and the greatest contributors to 𝑓t. Figure 16 shows
𝑓t𝑃(𝑎c)𝑑𝑎c𝑃(𝑎b)𝑑𝑎b which is the local mean of 𝑓t in 𝑎b and 𝑎c,
multiplied by the probability distributions of those parameters. The
distributions used are those of the post-cut population shown in or-
ange in figures 11 and 12. It can be seen that the most likely systems
to be seen transiting, and that dominate the contribution to the mean
value, are those that have belts in the range 100-1000 au and com-
panions in the range 300-10000 au.

4.2 Dependence of 𝑓t on Stellar Mass

Figure 17 illustrates how 𝑓t depends on the mass of the stars in the sys-
tem. In an analogous manner to figure 16, it shows 𝑓t (𝑀∗)𝑃(𝑀∗)𝑑𝑀∗
which is the local mean of 𝑓t in stellar mass multiplied by the stellar
mass probability distribution. The latter is taken to be the mass dis-
tribution of stars observed by Kepler (fig 10) rather than the expected
stellar mass function of the Galactic field in order to match the results
to the Kepler field. Whilst more massive host stars undergo Kozai-
Lidov oscillations more slowly (equation 18) and hence do not have
many large objects left by that time, they also have a much shorter
lifetime: hence 𝑓t is larger for these systems. The reverse is true for
less massive host stars, whilst they have more massive belts at the
time of Kozai-Lidov, they have much longer lifetimes and hence are
less likely to be observed with large objects at small pericentres. This
increasing trend with stellar mass persists despite the high bias to-
wards solar mass stars in the Kepler field, though the increase levels
off after 1 solar mass.

MNRAS 000, 1–22 (2021)



The EKM as the cause of transits of KIC 8462852 15

0.5 1.0 1.5 2.0 2.5 3.0 3.5
M/M

10 10

10 9

10 8

10 7

10 6

10 5

10 4
f tP

(M
*)

dM
*

Figure 17. Average value of 𝑓t as a function of 𝑀∗, the primary star mass,
weighted by the Kepler mass probability density function.

4.3 Dependence of 𝑓t on system age

Figure 18 shows the dependence of 𝑓t on the octupole timescale of
the system 𝑡oct, weighted by the probability distribution of octupole
timescales. As 𝑡oct represents when systems would first excite large
objects to small pericentres, this is roughly equivalent to the age
of the system when the observable signatures of cometary transits
would become visible in the lightcurves of these stars. It shows
that the most likely systems to exhibit this phenomenon are stars
that are roughly 102 − 103 Myrs old, whilst below 102 Myrs and
there is a downturn. The downturn below 102 Myrs is only slight,
however, before it reaches the stage where systems would still be in the
protoplanetary disc phase (𝑡oct ∼ 10 Myr) below which systems are
cut from the model. Above ∼ 103 Myrs, systems become less likely
to be observed in a transiting state and this is due to a combination
of factors. Firstly, from figure 17, more massive stars are more likely
to be seen to transit due to their shorter lifetimes, hence stars are
unlikely to be seen transiting at ∼ 10 Gyr ages as all the high mass
stars have left the main sequence and the low mass stars will either
have transit events earlier on in their lives or 𝑡oct is ∼ 10 Gyr long
but the belt has been severely depleted.

4.4 Probability of the EKM as the cause of observations

The mean fraction of their lifetime that stars in the Kepler field spend
with large planetesimals at scaled pericentres 𝑞′ < 10−2 is found to
be 𝑓t = 2.7 × 10−4. In order to turn this into an expected number
of KIC 8462852-like objects in the Kepler field (𝑁exp) we first use
equation 13 to find the probability an individual star exhibits KIC
8462852-like dips. Using the homology relation 𝑅∗ ∝ 𝑀

1/13
∗ and

𝑞 = 0.6 au from the observations of KIC 8462852, a value of 𝑃geo
for each star can be found which, due to the weak dependence of
𝑅∗ on 𝑀∗, varies little from system to system and has a mean value
of 𝑃geo = 3.8 × 10−3. Combining 𝑓t with 𝑃geo and 𝑓reject yields
𝑝 = 6.6 × 10−9 and, as 𝑝 ≪ 1, equation 14 gives the probability
of observing one or more stars to undergo these KIC 8462852-like
dimming events in the Kepler field as ⟨𝑁exp⟩ = 1.3 × 10−3.

This can also be framed in a Bayesian sense. If the occurrence
rate of stars with a KIC 8462852-like lightcurve P(L) is 1/200,000
from Kepler observations, and the occurrence rate of said stars if
their properties are due to comet scattering via the Kozai mechanism
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Figure 18. Mean fraction of lifetime spent with large objects at small pericen-
tres as a function of the octupole timescale 𝑡oct and weighted by the probability
distribution of 𝑡oct. This timescale roughly corresponds to the stellar age at
the time when transits would become observable and hence shows what age
stars that exhibit cometary lightcurves would be expected to be.

P(L|K) is 𝑓t (1− 𝑓reject)𝑃geo = 6.6×10−9, then using Bayes’ theorem
the probability of the Kozai mechanism causing the strange lightcurve
observations P(K|L) is:

𝑃(𝐾 |𝐿) = 𝑃(𝐿 |𝐾)𝑃(𝐾)
𝑃(𝐿) = 1.3 × 10−3, (37)

where it is assumed that P(K), the probability that the Kozai mecha-
nism will take effect in the systems, disregarding the considerations
already made, is unity.

Figure 19 shows the distribution of non-zero values of 𝑓t in the
sample of the ∼ 1% of systems that were not rejected and shows that
the majority of the values of 𝑓t sit below the mean. The fact that the
majority of systems spend a very small fraction of their lifetime in
the transiting stage is to be expected. This is chiefly because most
systems will have belts close to their host stars around 4 au as shown
in figure 11, and companions that are around 1000 au as shown in
figure 12. Hence, the octupole strength 𝜖 will be extremely weak and
only some of these systems will have a large enough mutual incli-
nation to undergo extreme Kozai-Lidov oscillations. Furthermore,
the timescale for these systems to undego Kozai-Lidov will be long
(equation 18) such that, over this period of time, assuming the stellar
system has not left the main sequence and ended its life, the close-in
belt will have collisionally ground away leaving it with a very low
mass.

4.5 Importance of the EKM vs. the SKM

Figure 20 shows the relative importance of including the effects
of the EKM as opposed to using the simpler case of the SKM as
an approximation. It shows the percentage of systems in the model
that have an inclination greater than the critical inclination for their
system 𝑖crit above which all planetesimals in the belt are excited to
low scaled pericentres for both the EKM and SKM cases. For the
simpler SKM case, 𝑖crit is calculated using equation 7 and is the same
for every system in the Monte Carlo model. Conversely, for the EKM,
𝑖crit is unique to each system and is calculated using the formalism
outlined in section 2.4. It shows that there is a difference between the
two cases, albeit slight, and that the EKM does increase the number
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Figure 19. Histogram of all the non-negative values of 𝑓t of the systems that
survived all the cuts. For those that did survive, 8% had non-zero values of
𝑓t and are shown here. The mean value of 𝑓t is shown by the dashed black
line and is clearly skewed by the highest values such that the vast majority of
systems have a value of 𝑓t that lie below this value.

of systems that have high enough inclinations by about ∼ 3%. For
the critical scaled pericentre considered in the Monte Carlo model,
∼ 14% of the systems have a misalignment large enough for the
EKM to take effect. The overall percentages in each case depend on
the critical scaled pericentre 𝑞′crit = 1 − 𝑒crit that planetesimals are
required to reach: the smaller the value of 𝑞crit that is needed, the less
systems that are correctly aligned. For the lowest scaled pericentres,
the difference in the percentage of correctly aligned systems between
the SKM and EKM cases can traverse an order of magnitude and
hence results will differ significantly depending on which case is used
in the modelling. For the EKM, the critical inclination above which
most planetesimals are excited to high eccentricities depends on 𝜖 and
thus on 𝑎b, 𝑎c and 𝑒comp. Therefore, the percentage of the population
that have inclinations above 𝑖crit depends on the distributions of these
parameters and hence on the cuts imposed as these can and do change
these distributions as shown in figures 11 and 12.

5 DISCUSSION

The likelihood of the Kozai mechanism as the origin of the obser-
vations of KIC 8462852 is small but not entirely improbable. The
Monte Carlo simulation shows that, for a Kepler-like distribution
of stars, the expected observed rate of stars with planetesimals
excited to high eccentricities is 6.6 × 10−9. This arises because,
from figure 16, the most likely systems to be seen transiting are
those with belts and binary companions where 102au ≲ ab ≲ 103au
and 102au ≲ ac ≲ 104au, which are approximately 1% of systems.
Only ∼ 14% of these systems have a large enough inclination for the
eccentric Kozai mechanism to take effect and, for those that do, they
spend, on average, 0.08% of their main sequence lifetimes in the
transient state where large objects are excited to high eccentricities.
Not all of these would be observable in the form of dips in their
lightcurves, however, as the orbits would need to be correctly
aligned with the line of sight from earth and this geometrical transit
probability is approximately 0.8%. Taken together, this accounts
for the calculated expected rate of ∼ 10−8 that is the output of the
model. The model also shows that the most likely belts to undergo
this behaviour are like those seen in observations of debris disc
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Figure 20. Percentage of systems in the Monte Carlo model whose inclina-
tions exceed those prescribed by the SKM (blue points) and the EKM (orange
points) to send particles beyond a threshold eccentricity as a function of that
threshold value. Black lines show, for each threshold eccentricity, the differ-
ence of the percentage of systems in the model that are sufficiently inclined
when using SKM and the EKM.

systems with 102 < 𝑎b/au < 103. Additionally, the companions
that are most likely to cause belts to undergo this instability are at
intermediate distances for wide binaries: at around 100s-1000s of au.
This matches the observed projected separation of the companion
star of KIC 8462852, found by Pearce et al. (2021) to be 878 ± 8 au.

Care should be taken with this, however, as the measurement by
Pearce et al. (2021) is only the projected on sky separation between
KIC 8462852 and the M dwarf and not necessarily the semi-major
axis of its orbit. Figure 21 shows the distribution of possible
semi-major axes that are consistent with the observed projected
separation (Yelverton et al. 2019b). The distribution was calculated
by producing separations calculated from random orbits with
uniformly distributed random values of 𝑖, Ω, 𝑒 and mean anomaly
M. The semi-major axes are derived from the same log normal
period distribution that is used in the Monte Carlo model, that was
the best fit to observations of wide binaries (Raghavan et al. 2010).
Orbits were considered to have produced a correct separation on a
probabilistic basis, with the probability of acceptance depending
on the produced separation itself and given by a Gaussian centred
on 878 au with a standard deviation of 8 au. Figure 21 shows that
the possible semi-major axes of the companion range from 439 to
2000-3000 au. The lower limit arises because orbits with lower 𝑎
would not reach a separation of 878 au even with 𝑒 ≈ 1, whilst the
tail is due to orbits with larger 𝑎 needing more eccentric or edge
on orbits to produce the correct separation. Hence, the distribution
of possible semi-major axes of the M-dwarf companion is still
consistent with the range of semi-major axes of wide binaries most
likely to induce the Kozai instability in planetesimal belts.

5.1 Dependence on Model Parameters and Distributions

The Monte Carlo model that has been built, and hence the results,
depends on a certain number of parameters whose true values are
unknown. The most important of these is the ‘duration of transiting
events’ 𝑡dur and the dependence of the number of stars in the Kepler
field expected to show KIC 8462852-like dips, ⟨𝑁exp⟩, on this pa-
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Figure 21. Probability density function of the possible semi-major axes of
the M dwarf companion’s orbit, given its observed separation of (878 ± 8) au
from KIC 8462852. Assumed priors on the companion’s orbit are: randomly
distributed 𝜔, randomly distributed cos 𝑖, randomly distributed 𝑒, and semi-
major axes drawn from the lognormal period distribution of Raghavan et al.
(2010).
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Figure 22. Expected number of KIC 8462852-like objects in the Kepler field
as a function of the duration of the observable transit signature caused by
each breakup event of a parent body with a mass greater than 10−6𝑀⊕ .

rameter is shown in figure 22. It is clear that, the longer the transiting
events last for, the greater the probability of observing a star with a
KIC 8462852-like light-curve. However, they are not proportional to
each other as would be expected from equation 31 and this is because
this equation only holds for those systems that are in the unsaturated
state. As 𝑡dur increases so too does the percentage of saturated
systems and, as the value of 𝑓t for saturated systems is independent
of 𝑡dur when 𝑡dur is small, this increase accounts for the shallower re-
lationship between ⟨𝑁exp⟩ and 𝑡dur that would otherwise be expected.

The value of 𝑡dur doesn’t just affect the expected number of KIC
8462852-like stars, it also affects the most likely parameters of
observable systems. For example, figures 23 and 24 show the most
likely belt radii and companion semi-major axes to be observed
respectively for three different values of 𝑡dur. For small values of
𝑡dur (i.e. 1-100 yr) only the most distant belts and companions
are expected to be observed. However, if 𝑡dur is increased to an
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Figure 23. Fraction of stellar lifetime spent with large (𝑚 > 10−6𝑀⊕) bodies
at small pericentres as a function of belt radius 𝑎b, weighted by the probability
that a belt would be found there. The probability distribution of belts used is
that of the post-cut population (orange histogram in figure 11). The different
colour curves represent different values of 𝑡dur, the lifetime of observable
transits caused by the breakup of massive bodies on sufficiently eccentric
orbits, in Myr.
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Figure 24. Fraction of stellar lifetime spent with large (𝑚 > 10−6𝑀⊕) bodies
at small pericentres as a function of companion semi-major axis 𝑎c, weighted
by the probability that a companion would be found to have that semi-major
axis. The probability distribution used is that of the post-cut population (or-
ange histogram in figure 12). The different colour curves represent different
values of 𝑡dur, the lifetime of observable transits caused by the breakup of
massive bodies on sufficiently eccentric orbits, in Myr.

extreme value of 1 Myr, then a large range of belts (10-1000 au) and
companions (300-10000 au) are likely to be observed. Similarly,
figure 18 shows how the most likely age of observed systems changes
with 𝑡dur; though the age is less sensitive to this free parameter, the
smallest values of 𝑡dur tend to disfavour the oldest systems.

The value of 𝑡dur reflects the lifetime of dust on an eccentric
orbit around a central star and hence for how long any optical dips
would be observable. The Kreutz family are highly inclined and
eccentric sungrazing comets in our own system that are the result of
breakups of larger parent bodies, albeit orders of magnitude smaller
than the parent body hypothesised for the KIC 8462852 system
(Kreutz 1888). These have been observed for hundreds of years
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and have orbital periods of 102 − 103 years and hence must have
lifetimes of many orbital periods (∼ 103 yr) (Fernández et al. 2021).
Additionally, constraints on the lifetime of large dust releasing
bodies can be found using the observations of the depth of optical
dips as measured by Boyajian et al. (2016).

We consider a comet of mass 𝑀comet, density 𝜌comet and radius
𝑅comet at the pericentre of its orbit at distance 𝑟p from the central star
and which is emitting dust as a spherically symmetric wind. Mass
conservation implies that for a constant mass loss rate ¤𝑀

¤𝑀 = 4𝜋𝑟2𝜌0

(
𝑟

𝑟0

)−2
𝑢, (38)

where r is radial distance from the comet, 𝜌0 and 𝑟0 are the density
and radius respectively at some reference position and 𝑢 is the speed
of the dust.

The depth of the optical dips measured around KIC 8462852 𝛿
caused by material of optical depth 𝜏 covering a fraction Ω∗ of the
stellar surface is

𝛿 = 𝜏Ω∗, (39)

for 𝜏 ≪ 1 and where optical depth is itself given by the line of sight
(z axis) absorption due to material with an opacity 𝜅 i.e.

𝜏 =

∫
𝜅𝜌𝑑𝑧. (40)

The opacity 𝜅 is the ratio of the interaction cross section of a particle
to its mass which, assuming a dust size 𝑠 and density 𝜌d, is

𝜅 =
3

4𝑠𝜌d
. (41)

Using equation 40 and considering the star as a point source, if the
comet is transiting with impact parameter 𝑏 = 0 and speed 𝑣 along
the 𝑥 axis such that when 𝑡 = 0 then 𝑥 = 0, then, at 𝑡 = 0 which
corresponds to the deepest part of the dip and assuming the size of
the clump is approximately 𝑟p

𝜏 =
3𝜌0𝑟

2
0

2𝑠𝜌d𝑟p
. (42)

Using equations 39 and 42, the reference density and radius can be
related to the dip depth by

𝜌0𝑟
2
0 =

2𝑠𝜌d𝑟p𝛿

3
, (43)

where Ω∗ = 1 has been used as the star is considered to be a point
source in this approximation. Substituting equation 43 into 38 and
further assuming that the velocity is approximately the escape veloc-

ity of the comet 𝑢esc =

√︃
8
3𝜋𝐺𝜌comet𝑅comet gives an expession for

the mass loss rate in terms of the dip depth

¤𝑀 =
8𝜋𝑠𝜌d𝑟p𝛿

3

√︂
8
3
𝜋𝐺𝜌comet𝑅comet. (44)

Hence, assuming 𝜌d = 𝜌comet = 𝜌 and using 𝛿 = 0.2 as observed by
Boyajian et al. (2016), the evaporation timescale 𝑡evap =

𝑀comet
¤𝑀 is

𝑡evap = 23
(
𝑅comet
100km

)2 (
𝜌

2700kgm−3

)−1/2 (
𝑠

1𝜇m

)−1 ( 𝑟p
0.1au

)−1
yr.

(45)

This estimate is found using the mass loss rate at pericentre using the
depth of the deepest dips observed. However, comets on eccentric
orbits only experience mass loss for a small portion of their orbits
before they move further from the star towards apocentre where the
mass loss rate is much lower and consequently it will take a certain
number of orbital periods for the comet to fully evaporate. However,
the total time the dip from this one body would be observable for is
roughly 𝑡evap and even if there are multiple evaporating bodies close
in orbital phase then 𝑡dur will still be roughly 𝑡evap or slightly larger.

Another model parameter that affects the outcome is 𝑀mid which
is the peak of the log-normal distribution of debris disc masses all
stars are assumed to be born with that, along with the maximum size
of their planetesimals 𝐷c, is constrained by Sibthorpe et al. (2018).
The results of the model have been based on a value of 10𝑀⊕
which is derived from protoplanetary disk observations (Andrews
& Williams 2005). Whilst this parameter sets the maximum mass of
belts in the model and should not be set unphysically high, it has no
effect on the value of ⟨𝑁exp⟩. This is because although 𝑀b ∝ 𝑀mid,
the number of objects, per unit belt mass, between 𝑚crit and 𝑚max
(𝑛′c) is proportional to 𝑀−1

mid. Hence the total number of objects in a
belt with masses between 𝑚crit and 𝑚max (𝑛′c𝑀b) is independent of
𝑀mid. However, 𝑀mid does have a minimum value in order for the
belts to have planetesimals that are large enough to cause dimming
events (i.e. 𝑚max > 10−6𝑀⊕) and this occurs at 𝑀mid = 1.27𝑀⊕ .

There are different hypothesised eccentricity distributions for wide
binaries whose applicability depends on the formation mechanism
of the stars themselves. The difficulty in constraining the eccentricity
distribution from observations of wide binaries is due to their very
long periods (i.e. a semi-major axis of ∼ 900 au corresponds to a
period of ∼ 20,000 years for solar mass stars), which means that a
tiny fraction of an orbital arc is covered by the observations leading
to many possible orbits with a wide variety of eccentricities that
fit the data. For example Raghavan et al. (2010) found that the ec-
centricity distribution was consistent with being uniform. However,
other studies by Tokovinin & Kiyaeva (2016) have found that the ec-
centricity distribution is thermal (i.e. ∝ e) or even super thermal for
wide binaries. The model was rerun with these different eccentricity
distributions but they did not affect the results as the eccentricity only
weakly influences the EKM timescale.

5.2 Applicability to other dusty Stars

The eccentric Kozai mechanism is a convenient mechanism for
exciting objects to high eccentricities and is often claimed as a
potential cause of multiple observed phenomena. For example,
various stars are observed to have what is termed ‘Extreme Debris
Discs’ (EDDs) which are identifiable by very hot dust close to
the star (blackbody radii 𝑅bb < 1 au and fractional luminosities
𝑓 > 0.01). This dust could not have formed in situ as it would have
collisionally depleted over the age of the stars (Wyatt et al. 2007), of
which the lifetimes of some are found to be greater than 100 Myrs
(Moór et al. 2021; Weinberger et al. 2011). One explanation for
this phenomenon is that it is the result of giant impacts where, after
planetary embryos are formed and the gas disc dissipates, embryos
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are dynamically excited onto crossing orbits and collide (Agnor et al.
1999; Chambers & Wetherill 1998). However, simulations show that
the era of giant impacts is ∼ 30 − 200 Myr (Canup 2004; Chambers
2013) which is difficult to reconcile with the ages of the oldest EDD
systems. On the other hand, it is not trivial to instead assign the
longer timescale Kozai mechanism as the cause of this close-in dust.
The results of this work show that, whilst the expected ages of most
systems would be 100-1000 Myr, the expected rate is not necessarily
applicable to EDDs as the input parameters were taken from those
stars in the Kepler field. In order to get a meaningful comparison,
the model must be rerun accounting for any biases of the searches
for EDDs (Kennedy & Wyatt 2012, 2013) which is beyond the scope
of this paper.

Similar to EDDs, exozodiacal dust is defined to be warm dust
within the habitable zone of a system (though the demarcation
between the two is ill defined). Kennedy & Wyatt (2013) find warm
12𝜇m excesses are detectable towards 1% of stars with a majority
of systems identified around young stars (< 120 Myr) and that
they correlate with cold outer belts like in 𝜂 Corvi (Marino et al.
2017). Some exozodi can be explained by dust from collisions in
the outer belt migrating inwards through PR drag (Rigley & Wyatt
2020) but others like 𝜂 Corvi require a scattering chain of planets
(Marino et al. 2018a) to deliver cometary material inwards through
many scattering events which then fragment (Rigley & Wyatt 2022).
Though the EKM is a possible cause of delivery, not all systems with
warm exozodi are in known stellar binaries although the possibility
of misaligned planets in these systems cannot be discounted.

Exocomets have been found through lightcurve analysis around
other stars in the Kepler and TESS samples (Kennedy et al. 2019)
and most of these systems are consistent with being ∼ 100 Myr
old. Additionally, the presence of exocomets can also be inferred
from detecting the gas they release using emission line spectroscopy
(Rebollido et al. 2020). It is possible that the EKM is the cause of
some of these observations though the results of this model show
that, for the case of wide stellar binary perturbers, it is too rare to
explain all the systems. Whilst the model struggles to account for
the one star with an odd lightcurve, it is interesting to note that
the lightcurve of the recently discovered TESS star TIC 43488669
(Tajiri et al. 2020) shows a remarkably similar lightcurve to KIC
8462852 in terms of its complexity. This would increase the known
number of KIC 8462852-like stars and could cause worse agreement
between this model and the data, though this model was developed
for the Kepler field and not for TESS.

The Kozai mechanism is also claimed to be a likely cause of some
observations of White Dwarfs (WDs). A not insignificant proportion
of White Dwarfs’ atmospheres are found to be polluted with metals
(Koester et al. 2014), these must have been accreted recently in
the history of the star as they have small sinking timescales that
would cause them to sink out of the atmosphere and no longer be
observable (Fontaine & Michaud 1979; Paquette et al. 1986). This
requires recent accretion of planetesimals or disrupted planetary
material onto the star which, as White Dwarfs are Gyrs old, suggests
that a recent instability could have occurred in the system. As the
timescales for the Kozai mechanism can be Gyrs long, it is often
claimed that this could contribute to some of the polluted systems
seen, though not all of them (Bonsor & Veras 2015). Similarly to the
pollution, WD 1856b, one of the few planets found transiting a White
Dwarf, is thought to have been influenced by the Kozai mechanism
(O’Connor et al. 2021; Stephan et al. 2021). This is because the

planet’s current location would mean that, if it had been there on
the main sequence, it would have been consumed by the star as it
expanded into a red giant (Merlov et al. 2021). This system is also
not just a binary, but part of a higher order system where the Kozai
timescale of the distant stars would be long enough to cause the
planet to become excited to high eccentricities and migrate inwards
where it tidally circularises after the star has evolved to the White
Dwarf stage. Whether the Kozai mechanism is a frequent occurence
in white dwarf systems is not clear, as figure 18 shows that, for
the smallest values of 𝑡dur, the most common stars to undergo this
mechanism are 100-1000 Myr old and there is a sharp downturn
at ages greater than 1 Gyr whereas there is no downturn for larger
𝑡dur. In addition, white dwarf systems evolve such that 𝑀∗, 𝑎b and
𝑎c would all change once the main sequence phase has ended which
clouds the picture and like the case with the EDDs the exact results
of the occurrence rate from this model are not directly applicable.
This work only considers the case of stars that undergo Kozai
oscillations within the main sequence lifetime of the system and
more work will have to be done to examine the population that Kozai
after the main sequence, and the biases of White Dwarf observations
would have to be accounted for before any comparison could be made.

This work has sought to quantify the probability that the dips
seen in the lightcurve of KIC 8462852 are due to the breakup of
an eccentric comet that has undergone Kozai oscillations due to a
stellar companion. Whilst the probability found was low, there is a
possibility that the Kozai mechanism could still be the cause, albeit
not in the form examined in this work. For example, a planet in
the system could induce the Kozai instability if it were sufficiently
misaligned from any planetesimal belt. Whilst alignment between
planets and belts would be expected from formation scenarios, and
this is the case in our own solar system, it is not infeasible to have
a misalignment. This is evidenced by giant planets which have been
found to be significantly inclined to each other such as in 𝜋 Men
(Xuan & Wyatt 2020), as well as the young HD 106906 system
where an exterior, eccentric and inclined Jupiter is warping the belt
(Kalas et al. 2015; Nguyen et al. 2021). As, for sensible values of
𝑡dur, the model predicts the occurrence of KIC 8462852-like objects
to be rare it is worth asking if this disfavours the interpretation of
the data as the breakup of an exocomet onto an eccentric orbit. This
is not the case, however, as there are other dynamical mechanisms
that can place planetesimals onto highly eccentric orbits. The most
appealing mechanism would be scattering of material in an outer belt
inwards by a planet or chain of planets as is thought to occur in 𝜂
Corvi (Marino et al. 2018a). This would require a chain of planets
in the system and for the architecture of the system to be such that
the levels of dust supplied by scattering of parent bodies is roughly
constant throughout the age of the system otherwise we would be
unlikely to observe it. Similarly, another possible mechanism is the
resonant destabilisation of a belt. This also requires the presence of
a planet such that the locations of its resonance lie in any cold belt
of planetesimals in the system such that the dynamics of any bodies
in the belt would be chaotic, achieving high eccentricities over the
lifetime of the system (Yoshikawa 1990; Bonsor et al. 2013).

5.3 Caveats

5.3.1 Planets

The presence of planets in misaligned wide binary systems would act
to suppress the Kozai instability induced by the companion. Perturba-
tions from such planets would drive secular (or, for the right period
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ratios, resonant) oscillations in the orbits of planetesimals. Ample
evidence for the influence of planets on smaller bodies comes from
our own Solar system in the form of the Asteroid and Kuiper belts, as
well as various comet populations (Yoshikawa 1990; Malhotra 1995).
This influence is also seen in exoplanetary systems, the comets seen
in 𝛽 Pic are thought to be scattered inwards from the planetesimal
belt by one of the planets in the system (Kiefer et al. 2014), whilst
the exozodi in the 𝜂 Corvi system is thought to be due to scattering
of comets inward from a cold outer belt by a chain of sufficiently
massive planets (Marino et al. 2018b). There are also eccentric belts,
for example Fomalhaut (MacGregor et al. 2017; Gáspár et al. 2023),
as well as those that have warps or gaps, which provide evidence that
planets can dominate the evolution of planetesimals around them.
If this effect is strong enough, usually meaning that the planetesi-
mals are close enough to the planet(s), then the planetary interaction
will have a greater effect than that of the binary companion and this
would act to shut off the Kozai mechanism in a manner analogous to
General Relativity (Innanen et al. 1997). The planet, however, could
itself be affected by the star and increase its eccentricity and the
effect of this on the planetesimals orbits is unknown though the evo-
lution of planets under the Kozai mechanism may be subject to tidal
considerations which severely complicate the picture. In addition to
this, a system of multiple planets with or without a belt can precess
as a rigid disc in the presence of a highly misaligned companion
star instead of undergoing the eccentric Kozai mechanism and avoid
destruction Innanen et al. (1997).

5.3.2 Input Distributions

Throughout this work it has been assumed that the inclination
distribution of wide binary companions to planetary systems is
uniformly distributed. Recent analysis of astrometric observations
by Christian et al. (2022) and Behmard et al. (2022), however, have
revealed the possibility that wide binary companions are biased
towards low mutual inclinations. This could be caused by the natural
inclination distribution that arises out of binary star formation
through core fragmentation. Though some binaries would inevitably
be formed by capture and have random orientations, these may be in
the minority of total wide binary systems and would be represented
only at the widest separations. The observed bias could also,
however, be due to the Kozai mechanism itself. If the distribution
inherited since birth is uniform, then it could be expected that some
systems will have a high enough inclination that they will become
unstable due to the EKM and hence will not be included in the
samples analysed by Christian et al. (2022) and Behmard et al.
(2022), as they will have been destroyed. Though it should be noted
that, even for the most highly inclined systems, the susceptibility to
the EKM is subject to the same restrictions outlined in section 3.6.

The parameter distributions used in this model are uncorrelated
which is not necessarily true in real systems. For example, more
massive stars might be expected to form with more massive proto-
planetary discs and hence have more massive debris discs. Similarly,
more distant binary companions are more likely to have formed by
capture than core fragmentation than close in pairs and thus could be
expected to have larger eccentricities. Whilst these would not change
the final answer by orders of magnitude, they might affect the most
likely masses and ages of stars that would be seen to be undergoing
these events.

6 CONCLUSIONS

This work has sought to examine the effect of highly misaligned
wide binary companion stars on planetesimal belts, with a specific
focus on explaining the extreme lightcurve of KIC 8462852 through
the ‘Eccentric Kozai Mechanism’. The secular equations of motion
for the hierarchical three body problem were integrated to show that
planetesimals in a belt can reach eccentricities greater than 0.99
for large enough inclinations. The exact inclination above which
this occurs depends on the semi-major axes of the planetesimal and
companion, but in some cases can be as low as 45◦. For these incli-
nations, not only does this high eccentricity / low pericentre space
become unlocked but the integrations also show that, on average,
100% of the belt particles will reach these high eccentricities.

These results were then fed into a Monte Carlo model of the
Kepler field that sought to constrain how often the eccentric Kozai
mechanism would be expected to produce an observable exocomet
signature in the lightcurves of stars and the parameters of the most
likely systems to be seen in this state. It was found that the binary
systems most likely to be observed with large objects at small
pericentres are those with belts at 102 − 103 au, companions at
102 − 104 au, host stars with masses 𝑀∗ ≥ 1𝑀⊙ and stellar ages
of 102 − 103 Myr and, apart from the non-detection of a distant
belt, all of these parameters match with what is known about the
KIC 8462852 system. However the model found, on average, the
fraction of their main sequence lifetimes that stars spend with large
objects excited to high eccentricities is 2.7 × 10−4, with a spread
between 10−9 − 10−1. This leads to a probability of observing one
or more Kepler stars to have KIC 8462852-like dimming events due
to this mechanism of 1.3 × 10−3. Hence, though it is possible that
the Kozai mechanism might be the cause, it is much more likely
than not that another mechanism is responsible, such as scattering
by one or more planets undergoing a dynamical instability or
resonant destabilisation of planetesimals in a belt. This has potential
consequences beyond the interpretation of KIC 8462852 as the
eccentric Kozai mechanism is often invoked to explain phenomena
such as extreme debris discs. Only by extending this model to these
other scenarios can it be determined whether this mechanism occurs
often enough to be a viable explanation.
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APPENDIX A: THE SECULAR EQUATIONS OF MOTION

A1 The Quadrupole and Octupole Terms in the Disturbing
Function

The quadrupole and octupole terms in the disturbing function are

𝐹quad = − 𝑒
2

2
+ 𝜃2 + 3

2
𝑒2𝜃2 + 5

2
𝑒2 (1 − 𝜃2) cos(2𝜔), (A1)

and

𝐹oct =
5
16

(𝑒 + 3
4
𝑒2) [(1 − 11𝜃 − 5𝜃2 + 15𝜃3) cos(𝜔 −Ω)+

(1 + 11𝜃 − 5𝜃2 − 15𝜃3) cos(𝜔 +Ω)]−
175
64

𝑒3 [(1 − 𝜃 − 𝜃2 + 𝜃3) cos(3𝜔 −Ω)+

(1 + 𝜃 − 𝜃2 − 𝜃3) cos(3𝜔 +Ω)],

(A2)

MNRAS 000, 1–22 (2021)

http://dx.doi.org/10.3847/1538-3881/ac53a7
https://ui.adsabs.harvard.edu/abs/2022AJ....163..160B
http://dx.doi.org/10.3847/2041-8205/819/2/L34
https://ui.adsabs.harvard.edu/abs/2016ApJ...819L..34B
http://dx.doi.org/10.1093/mnras/stv1913
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454...53B
http://dx.doi.org/10.1093/mnras/stt933
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433.2938B
http://dx.doi.org/10.1126/science.1185402
https://ui.adsabs.harvard.edu/abs/2010Sci...327..977B
http://dx.doi.org/10.1093/mnras/stw218
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.3988B
http://dx.doi.org/10.1088/0004-637X/799/2/170
https://ui.adsabs.harvard.edu/abs/2015ApJ...799..170C
http://dx.doi.org/10.1016/j.icarus.2003.09.028
https://ui.adsabs.harvard.edu/abs/2004Icar..168..433C
http://dx.doi.org/10.1016/j.icarus.2013.02.015
https://ui.adsabs.harvard.edu/abs/2013Icar..224...43C
http://dx.doi.org/10.1006/icar.1998.6007
https://ui.adsabs.harvard.edu/abs/1998Icar..136..304C
http://dx.doi.org/10.3847/1538-3881/ac517f
https://ui.adsabs.harvard.edu/abs/2022AJ....163..207C
http://dx.doi.org/10.1029/JB074i010p02531
https://ui.adsabs.harvard.edu/abs/1969JGR....74.2531D
http://dx.doi.org/10.1126/science.1210923
https://ui.adsabs.harvard.edu/abs/2011Sci...333.1602D
http://dx.doi.org/10.1146/annurev-astro-081710-102602
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..269D
https://ui.adsabs.harvard.edu/abs/1991A&A...248..485D
http://dx.doi.org/10.1088/0004-6256/149/4/131
https://ui.adsabs.harvard.edu/abs/2015AJ....149..131E
http://dx.doi.org/10.1093/mnras/sty1834
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.5491E
http://dx.doi.org/10.1093/mnras/stab2562
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508..789F
http://dx.doi.org/10.1086/380111
https://ui.adsabs.harvard.edu/abs/2004ApJ...600..769F
http://dx.doi.org/10.1086/157247
https://ui.adsabs.harvard.edu/abs/1979ApJ...231..826F
http://dx.doi.org/10.1051/0004-6361/201629272
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...1G
http://dx.doi.org/10.1038/s41550-023-01962-6
http://dx.doi.org/10.1051/0004-6361:20031594
https://ui.adsabs.harvard.edu/abs/2004A&A...414..633G
http://dx.doi.org/10.1086/116855
https://ui.adsabs.harvard.edu/abs/1994AJ....107..306H
http://dx.doi.org/10.1093/mnras/stab1284
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4151H
http://dx.doi.org/10.1093/mnras/stac373
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4921H
http://dx.doi.org/10.1086/300695
https://ui.adsabs.harvard.edu/abs/1999AJ....117..621H
http://dx.doi.org/10.1016/0019-1035(92)90008-U
https://ui.adsabs.harvard.edu/abs/1992Icar...96..107I
http://dx.doi.org/10.1086/118405
https://ui.adsabs.harvard.edu/abs/1997AJ....113.1915I
http://dx.doi.org/10.1088/0004-637X/814/1/32
https://ui.adsabs.harvard.edu/abs/2015ApJ...814...32K
http://dx.doi.org/10.1103/PhysRevLett.107.181101
https://ui.adsabs.harvard.edu/abs/2011PhRvL.107r1101K
http://dx.doi.org/10.1111/j.1365-2966.2012.21621.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426...91K
http://dx.doi.org/10.1093/mnras/stt900
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433.2334K
http://dx.doi.org/10.1111/j.1365-2966.2012.21865.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.2115K
http://dx.doi.org/10.1093/mnras/sty3049
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.5587K
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.5587K
http://dx.doi.org/10.1038/nature13849
https://ui.adsabs.harvard.edu/abs/2014Natur.514..462K
http://dx.doi.org/10.1051/0004-6361/201423691
https://ui.adsabs.harvard.edu/abs/2014A&A...566A..34K
http://dx.doi.org/10.1086/108790
https://ui.adsabs.harvard.edu/abs/1962AJ.....67..591K
http://dx.doi.org/10.1051/0004-6361:20064907
https://ui.adsabs.harvard.edu/abs/2006A&A...455..509K
http://dx.doi.org/10.1086/321515
https://ui.adsabs.harvard.edu/abs/2001ApJ...555..945K
http://dx.doi.org/10.1088/0004-637X/791/2/86
https://ui.adsabs.harvard.edu/abs/2014ApJ...791...86L
http://dx.doi.org/10.1016/0032-0633(62)90129-0
https://ui.adsabs.harvard.edu/abs/1962P&SS....9..719L
http://dx.doi.org/10.1088/0004-637X/742/2/94
https://ui.adsabs.harvard.edu/abs/2011ApJ...742...94L
http://dx.doi.org/10.1093/mnras/stu2396
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447..747L
http://dx.doi.org/10.1093/mnras/stu2396
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447..747L
http://dx.doi.org/10.3847/1538-4357/aa71ae
https://ui.adsabs.harvard.edu/abs/2017ApJ...842....8M
http://dx.doi.org/10.1086/117532
https://ui.adsabs.harvard.edu/abs/1995AJ....110..420M
http://dx.doi.org/10.1093/mnras/stw2867
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.2595M
http://dx.doi.org/10.1093/mnras/sty1475
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.1651M
http://dx.doi.org/10.1093/mnras/sty1475
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.1651M
http://dx.doi.org/10.3847/2041-8213/ac4974
https://ui.adsabs.harvard.edu/abs/2022ApJ...925L...1M
http://dx.doi.org/10.1051/0004-6361/201014667
https://ui.adsabs.harvard.edu/abs/2010A&A...518L.135M
http://dx.doi.org/10.3847/2041-8213/ac0f7d
https://ui.adsabs.harvard.edu/abs/2021ApJ...915L..34M
http://dx.doi.org/10.1093/mnras/stx823
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.4399M
http://dx.doi.org/10.1038/nature17445
https://ui.adsabs.harvard.edu/abs/2016Natur.533..509M
http://dx.doi.org/10.3847/1538-4365/aa6fb6
https://ui.adsabs.harvard.edu/abs/2017ApJS..230...15M
http://dx.doi.org/10.3847/2041-8205/830/2/L39
https://ui.adsabs.harvard.edu/abs/2016ApJ...830L..39M
http://dx.doi.org/10.3847/1538-4357/abdc26
https://ui.adsabs.harvard.edu/abs/2021ApJ...910...27M
http://dx.doi.org/10.1111/j.1365-2966.2009.15360.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.399.1403M
http://dx.doi.org/10.1146/annurev-astro-081915-023315
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..441N
http://dx.doi.org/10.1088/0004-637X/795/2/102
https://ui.adsabs.harvard.edu/abs/2014ApJ...795..102N
http://dx.doi.org/10.1088/0004-637X/719/2/1775
https://ui.adsabs.harvard.edu/abs/2010ApJ...719.1775N
http://dx.doi.org/10.1088/2041-8205/754/2/L36
https://ui.adsabs.harvard.edu/abs/2012ApJ...754L..36N
http://dx.doi.org/10.1088/0004-637X/773/2/187
https://ui.adsabs.harvard.edu/abs/2013ApJ...773..187N
http://dx.doi.org/10.3847/1538-3881/abc012
https://ui.adsabs.harvard.edu/abs/2021AJ....161...22N
http://dx.doi.org/10.1093/mnras/staa3723
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501..507O
http://dx.doi.org/10.1093/mnras/stac1189
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513.4178O
http://dx.doi.org/10.1088/0004-637X/725/2/1485
https://ui.adsabs.harvard.edu/abs/2010ApJ...725.1485O
http://dx.doi.org/10.1086/191112
https://ui.adsabs.harvard.edu/abs/1986ApJS...61..197P
http://dx.doi.org/10.1093/mnras/stv2142
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.3207P
http://dx.doi.org/10.1093/mnras/stab269
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.5390P
http://dx.doi.org/10.3847/1538-4357/abdd33
https://ui.adsabs.harvard.edu/abs/2021ApJ...909..216P
http://dx.doi.org/10.1051/0004-6361/202142720
https://ui.adsabs.harvard.edu/abs/2022A&A...659A.135P
http://dx.doi.org/10.1088/0004-637X/699/1/L17
https://ui.adsabs.harvard.edu/abs/2009ApJ...699L..17P
http://dx.doi.org/10.1137/0904010
http://dx.doi.org/10.1088/0067-0049/190/1/1
https://ui.adsabs.harvard.edu/abs/2010ApJS..190....1R
http://dx.doi.org/10.1093/mnras/stx2735
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.1453R
http://dx.doi.org/10.1051/0004-6361/201936071
https://ui.adsabs.harvard.edu/abs/2020A&A...639A..11R
http://dx.doi.org/10.1051/0004-6361/201118085
https://ui.adsabs.harvard.edu/abs/2012A&A...537A.128R
http://dx.doi.org/10.1093/mnras/stu2164
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446.1424R
http://dx.doi.org/10.1093/mnras/staa2029
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.1143R
http://dx.doi.org/10.1093/mnras/stab3482
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510..834R
http://dx.doi.org/10.1093/pasj/psu152
https://ui.adsabs.harvard.edu/abs/2015PASJ...67...20S
http://dx.doi.org/10.3847/2041-8205/822/2/L34
https://ui.adsabs.harvard.edu/abs/2016ApJ...822L..34S
http://dx.doi.org/10.1093/mnras/stx3188
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.3046S
http://dx.doi.org/10.3847/1538-4357/ac22a9
https://ui.adsabs.harvard.edu/abs/2021ApJ...922....4S
http://dx.doi.org/10.3847/1538-4365/abbc17
https://ui.adsabs.harvard.edu/abs/2020ApJS..251...18T
http://dx.doi.org/10.1093/mnrasl/slw008
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458L..39T
http://dx.doi.org/10.1093/mnras/stv2825
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.2070T
http://dx.doi.org/10.1088/0004-637X/726/2/72
https://ui.adsabs.harvard.edu/abs/2011ApJ...726...72W
http://dx.doi.org/10.3847/2041-8205/829/1/L3
https://ui.adsabs.harvard.edu/abs/2016ApJ...829L...3W
http://dx.doi.org/10.1086/518404
https://ui.adsabs.harvard.edu/abs/2007ApJ...663..365W
http://dx.doi.org/10.1093/mnras/stx2713
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.5286W
http://dx.doi.org/10.1093/mnras/staa2033
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2096X
http://dx.doi.org/10.1093/mnras/stz1927
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.3588Y
http://dx.doi.org/10.1093/mnras/stz1927
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.3588Y
http://dx.doi.org/10.1016/0019-1035(90)90022-2
https://ui.adsabs.harvard.edu/abs/1990Icar...87...78Y


22 S. D. Young and M. C. Wyatt

where 𝜃 = cos(𝑖).

A2 The Standard Kozai-Lidov Mechanism

The time derivatives of the orbital elements of 𝑚1 in the SKM case
are

𝑑𝑖

𝑑𝜏
= −15

8
𝑒2

√
1 − 𝑒2

sin(2𝜔) sin(𝑖) cos(𝑖), (A3)

𝑑𝑒

𝑑𝜏
=

15
8
𝑒
√︁

1 − 𝑒2 sin(2𝜔) sin(2𝑖), (A4)

𝑑𝜔

𝑑𝜏
=

3
4

1
√

1 − 𝑒2
[2(1 − 𝑒2) + 5 sin2 (𝜔) (𝑒2 − sin2 𝑖)], (A5)

𝑑Ω

𝑑𝜏
= − cos(𝑖)

4
√︁
(1 − 𝑒2)

(3 + 12𝑒2 − 15𝑒2 cos2 (𝜔)). (A6)

A3 The Eccentric Kozai-Lidov Mechanism

The time derivatives of the orbital elements of 𝑚1 in the EKM case
are

𝑑𝑖

𝑑𝜏
=

−1

sin(𝑖)
√

1 − 𝑒2

(
𝜕𝐹

𝜕Ω
− 𝜃 𝜕𝐹

𝜕𝜔

)
, (A7)

𝑑𝑒

𝑑𝜏
=

−(1 − 𝑒2)1/2
𝑒

𝜕𝐹

𝜕𝜔
, (A8)

𝑑𝜔

𝑑𝜏
=

(1 − 𝑒2)1/2
𝑒

𝜕𝐹

𝜕𝑒
+ 𝜃 (1 − 𝑒2)−1/2 𝜕𝐹

𝜕𝜃
, (A9)

𝑑Ω

𝑑𝜏
= −(1 − 𝑒2)−1/2 𝜕𝐹

𝜕𝜃
, (A10)

where 𝐹 = 𝐹quad + 𝜖𝐹oct.

APPENDIX B: TABLE OF PARAMETERS

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table B1. The parameters used in the paper.

Parameter Meaning Definition Equation Number
𝐻TP Hamiltonian of a test particle in the prescence of an external, misaligned perturber, expanded to octupole order 1
𝐹quad Quadrupolar term of the Hamiltonian A1
𝐹oct Octupolar term of the Hamiltonian A2
𝜖 Strength of the octupole terms relative to the quadrupole terms 2
𝑀∗ Mass of central star that is orbited by a planetesimal and companion star
𝑀c Mass of the companion star
𝑎c Semi-major axis of the companion star’s orbit
𝑒c Eccentricity of the companion star’s orbit
𝑎pl Semi-major axis of a massless planetesimal
𝑒pl Eccentricity of a massless planetesimal
𝑖pl Inclination of a massless planetesimal
𝜔pl Longitude of pericentre of a massless planetesimal
Ωpl Longitude of ascending node of a massless planetesimal
Ω∗ Angular velocity of a massless planetesimal about its host star
𝑎b Semi-major axis of the midpoint of a planetesimal belt
𝑎b,lower Semi-major axis of the inner edge of a planetesimal belt
𝑎b,upper Semi-major axis of the outer edge of a planetesimal belt
𝑡quad Timescale for quadrupolar oscillations 4
𝑡oct Timescale for octupolar oscillations 18
𝑞′ Scaled pericentre of an orbit, true pericentre divided by semi-major axis 6
𝑞′

crit Critical scaled pericentre below which planetesimals break up and create a KIC 8462852-like light curve
𝑖crit Critical inclination above which planetesimals break up and create a KIC 8462852-like light curve
𝐹 (𝑞′ < 𝑞′

crit ) Fraction of particles in a belt that reach a scaled pericentre less than 𝑞′
crit 11

𝑖mid Inclination at which 𝐹 (𝑞′ < 𝑞′
crit ) = 1/2

⟨𝑁exp ⟩ Expected number of observable KIC 8462852-like objects in the Kepler field 14
𝑓reject Fraction of the initial sample of the MC model that will not Kozai for physical reasons
𝑓t Fraction of a star’s lifetime that it produces an observable, KIC 8462852-like light curve 16 & 15
𝑃geo Geometric transit factor accounting for percentage of orbits crossing the line of sight 12
𝑝 The probability that a star would be observed to have a KIC 8462852-like light curve 13
𝑡MS The main sequence lifetime of a star 17
𝑁 (𝑚 > 𝑚crit ) The number of planetesimals with a mass greater than 𝑚crit 29
𝑡dur The length of time a KIC 8462853-like light curve lasts for after the breakup of a large planetesimal
𝑛(𝐷) The size distribution of particles in a collisional cascade 20
𝑅bb The radius of a planetesimal belt if it emitted as a black body 19
𝑀bb The mass of a planetesimal belt if its semi-major axis is its black body radius 24
𝑀mid The peak of the log normal distribution of debris disc masses
Γ The ratio between the black body radius of a disc and its true radius 26
𝑀b The mass of a planetesimal belt 27
𝑚max The mass of the largest planetesimal in a belt
Δ𝑎b The width of a planetesimal belt
𝑡orb,comp The orbital period of the companion star

MNRAS 000, 1–22 (2021)


	Introduction
	Parameter Space Exploration of the Eccentric Kozai-Lidov Mechanism
	The Secular Equations
	Parameter Space Exploration
	Comparison with N-body Simulations
	Fraction of Belt Mass Excited to High Eccentricities
	Summary

	Monte Carlo Model
	General Setup
	Finding ft
	Collisional Model
	Incorporating the Collisional Model
	Input Distributions
	Cuts to Initial Distribution

	Results
	Dependence of ft on semi-major axes
	Dependence of ft on Stellar Mass
	Dependence of ft on system age
	Probability of the EKM as the cause of observations
	Importance of the EKM vs. the SKM

	Discussion
	Dependence on Model Parameters and Distributions
	Applicability to other dusty Stars
	Caveats

	Conclusions
	The Secular Equations of Motion
	The Quadrupole and Octupole Terms in the Disturbing Function
	The Standard Kozai-Lidov Mechanism
	The Eccentric Kozai-Lidov Mechanism

	Table of Parameters

