
STARS

draft version, October 28, 2012

2

Contents

1 Introduction 5
1.1 About the code . 5
1.2 About this document . 6

1.2.1 Motivation . 6
1.2.2 Structure . 6
1.2.3 Further work . 6

2 Basic user guide 9
2.1 Files . 9
2.2 Running the code . 9
2.3 Viewing output . 10
2.4 Examples of more general operation . 10

2.4.1 Evolving a PMS model to a homogeneous ZAMS model 10
2.4.2 Changing the mass of a ZAMS model . 11

3 Input and output 13
3.1 data (1) . 13
3.2 COtables (10) . 18
3.3 physn.dat (11) . 18
3.4 nrate.dat (13) . 18
3.5 modin[2] (30) . 18
3.6 nucmodin[2] (31) . 19
3.7 out[2] (32) . 19
3.8 plot[2] (33) . 20
3.9 modout[2] (34) . 21
3.10 nucmodout[2] (35) . 21
3.11 syntha,synthb,synthc[2] (36,37,38) . 22
3.12 surface[2],centre[2] (39,40) . 22
3.13 sprocess[2] (41) . 22
3.14 montage[2] (42) . 23

3

4 Code structure 25
4.1 Architecture . 25

4.1.1 Common blocks . 25
4.1.2 I/O and linking . 25
4.1.3 Code units . 26

4.2 Subroutines . 26

5 Input physics 29

6 Advanced user guide 31

A STARS cheat sheet 33

B Veteran tips 35
B.1 Comments in I/O files . 35
B.2 Command line tools for manipulating plain text . 35
B.3 Separating models in subdirectories . 36

C Matrix inversion 39

4

1
Introduction

1.1 About the code

The code documented here was originally written by Peter Eggleton in the early 1970s. Features of the original
code were outlined in four main papers that described the adaptive non-Lagrangian mesh (Eggleton, 1971),
the treatment of convection (Eggleton, 1972), the method for computing the equation of state (Eggleton et al.,
1973) and the code’s output for the evolution of a 4M� star (Eggleton, 1973). Pols et al. (1995) detailed a
number of updates to the code that were added in the intervening 22 years. That version of the code was used
to produce the grid of models presented by Pols et al. (1998) and was previously distributed as the ds2000

version of the code.
The next major update was made my John Eldridge as part of his PhD. John created a new opacity routine

that included data for variable abundances of carbon and oxygen (Eldridge & Tout, 2004). A further version of
the code was available. I refer to it as ds2004.

Around the same time, Richard Stancliffe, also as part of his PhD, worked on getting the code to accurately
model thermally-pulsing asymptotic giant branch (TPAGB) stars. He subsequently continued working on the
code and ultimately produced the version that is documented here, which I refer to as bs2007. Because the
nature of much of the code is unchanged, much of this documentation is relevant to previous versions of the
code. However, if you are working with an older version, beware that there are differences and no mention is
made of them here.

The contents of the code papers are summarized below.

Citation Content
Eggleton (1971) Mesh spacing.
Eggleton (1972) Convection and semiconvection.
Eggleton et al. (1973) Equation of state.
Eggleton (1973) Example evolution.
Pols et al. (1995) Summary of updates, notably EoS and physical data.
Schröder et al. (1997) Convective overshooting algorithm.
Eldridge & Tout (2004) New opacity routines.
Stancliffe, Tout & Pols (2004) TPAGB-specific mesh-spacing function.
Stancliffe et al. (2005) Minor element nucleosynthesis update.
Stancliffe et al. (2007) Thermohaline mixing.
Stancliffe & Eldridge (2009) Example binary evolution.

If you have used the code for published work, citations to these papers, as appropriate, would be greatly
appreciated.

5

1.2 About this document

Warrick Ball began writing this document in some of the time between the completion of his PhD and the start
of his first postdoctoral position. The content is drawn from a number of documents that collectively provided
some form of guidance for using the code. Chapter 2 is inspired by the short user guide that existed on the old
website. Most of Chapter 3 is taken from Richard Stancliffe’s own documentation for bs2007 that he wrote
around the time of its release. Most of the technical details in 4 are Warrick Ball’s own original creation, with
some input from Peter Eggleton’s documentation for EV/TWIN. Chapter 5 is a consolidation of many years of
IoA PhD theses, including those of Warrick Ball, John Eldridge and Richard Stancliffe. Some elements were
also taken from the EV/TWIN writeup. Chapter 6 is a hybrid of Richard Stancliffe’s tutorials and the ‘recipes’
that were on the website.

The ‘cheat sheet’ (Appendix A) was created by Warrick Ball, although many STARS users may have created
their own. Appendix B was created for the first time for this document and draws on the collective experience
of past and present members of the Cambridge Stellar Evolution group. Finally, Appendix C is a near-verbatim
copy of an obscure plain-text file written by Peter Eggleton for EV/TWIN. Warrick Ball was surprised to find
that Richard Stancliffe saw it for the first time in 2012!

1.2.1 Motivation

The persistent lack of a primary user guide for the STARS code presented a steep learning curve for new users.
Each newcomer to the code would have to cobble together the available documents, some of which are only
available from obscure sources, and try to make sense of how to operate the code. Even then, only after some
time would new users be able to streamline their operation of the code and use it efficiently. The objective of
this documentation is to resolve these problems. Hopefully, now, new users are be able to start using the code
much more readily than before and capitalize on the collective experience of established users.

Alas, this motivation is expected to be largely unrewarded and can only propel the author’s spirit so far. If
you find that this documentation or the website have fallen into something resembling disrepair, its probably
because a previous maintainer became too preoccupied with trying to establish a career!

1.2.2 Structure

This document is intended as both a user guide and a reference document and it need not be approached in a
linear fashion. Chapter 2 is intended for new users to get a feel for simply running the code and viewing output.
The specific task at hand can be formulated and a decision made about how to use the code to achieve that by
controlling the input and output, which is described in Chapter 3. Examples of more advanced use is found in
Chapter 6 but the material in that section presumes the user is familiar with Chapter 3. This should not be seen
as a major problem because the user can refer to Chapter 3 to find the relevant information when necessary.

Chapters 4 and 5 provide technical details about the code. The design of the code and a breakdown of its
components are provided in Chapter 4. Chapter 5 describes the physical processes that are included in the code
and, to some extent, how they are implemented. If you intend to publish results that are produced by the STARS

code, you should be familiar with Chapter 5.
The appendices provide additional material that is not important but might be useful. Appendix A can be

printed and placed somewhere nearby as a reminder of the output options and controls. Appendix B contains
some useful tricks for using the code effectively. Again, these are not important but you may find them useful.
Finally, Appendix C is a reproduction of Peter Eggleton’s detailed description of the matrix inversion algorithm.
It is the only documentation of these subroutines that anyone is aware of so it is included here for completeness
and posterity.

1.2.3 Further work

This documentation is still incomplete and the following material needs to be created.

6

• A brief outline of using the code to create ZAMS models and change their masses (Section 2.4).

• A description of the modeling of physical processes and of the implementation of those models. i.e. Chap-
ter 5.

• The advanced user guide. i.e. Chapter 6.

• Completion of the description of the subroutines (Section 4.2).

• A description of how to use the IoA grid to run jobs would be useful (Appendix B).

• A new diagram of the code structure (Section 4.2).

• Appendix C is presently nearly a pure copy-‘n-paste of Peter’s plain-text document. It should be TEX-ed.

7

8

2
Basic user guide

This sections describes the contents of the archive that is available on the website and the basic operation of
the code. It is presumed that you are able to compile FORTRAN 77 code into an executable. Command line
instructions are given for GNU/Linux operating systems.

2.1 Files

Once you have downloaded the standard archive, extract it in a suitable directory. e.g. /home/user/stars/.
This creates several folders and a few files in the current directory. The archive does not create a zeroth-order
folder like stars/. The contents of the archive are tabulated below.

dat/ Contains tables of physical data and other constants, including the opacities, nuclear
reaction rates and spline coefficients.

obj/ Initially empty but, after compilation, contains all the object files for the subroutines.
src/ Contains the FORTRAN source code.
Makefile Compilation script.
run Execution script.
data Controls for operation of the code (see Section 3.1).
modin The stellar model data (see Section 3.5).

2.2 Running the code

The compilation script (i.e. Makefile) is relatively simple. It is based on A Simple Makefile Tutorial 1, which
Warrick Ball found on the website of Bruce Maxwell. By default, the Makefile uses gfortran to compile
the code. You should check the file in anticipation of compilation errors and for compatibility with your system.
This documentation does not address such issues. When ready, compile the STARS executable by running make.
This creates the object files in the obj/ directory, links them and creates the STARS executable file, bs. You
should now be ready to run the code.

To run the code, execute the script run. In GNU/Linux, you will probably have to enter ./run at the
terminal. The code should give a few lines of output to indicate that it is initializing model and then sit quietly.
The STARS code is now computing the evolution of the default stellar model, which is a 1M� pre-main-sequence
star with a central temperature around 106 K. The code should run until the star reaches the helium flash, where
it stops. The terminal should show a whole lot of lines starting with

1http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

9

OPACITY OUT OF RANGE TF FR FKL FKH

followed by four numbers. When the terminal becomes available again, the run is complete. Depending on the
speed of your computer, this should take a few minutes.

2.3 Viewing output

The output of the model is written to several output files. First, let’s create an HR diagram of the star’s evolution.
In your favourite plotting program, plot column 4 of plot against column 5. For example, to plot the output
using GNUPLOT, run

plot "plot" using 4:5

Column 4 is the effective temperature in kelvin and column 5 the logarithm of the luminosity in L�. Remember
that Hertzsprung–Russell diagrams have Teff reversed, so the x-axis is backwards. A complete list of the
columns of plot is included in Section 3.8. So, if you wanted to plot the central density against central
temperature, you could instead plot column 73 against column 74.

The second output file is out. You may open this in a text editor to view its contents. The file begins with
the basic initial conditions of the model and then provides summaries of the star’s structure and, every 100th
model, detailed profiles of the structure and composition. The output is described in detail in Section 3.7 and
the parameters that control the output are specified in the file data, which is described in Section 3.1.

The third file is modout. This file provides stellar models in the same format as input models. If you want
to use a previous stellar model to create a new one, you will want to copy parts of this output into modin. The
format of modin and modout is described in Section 3.5.

2.4 Examples of more general operation

There are two purposes to running the code: either to model the evolution of the star or to create an initial model
by taking a known stellar model and telling the code to modify it in some way. e.g. by adding or subtracting
mass. The first case is as described above. With the appropriate modin file, just run the script (run) and then
view the output.

In the second case (creating new models), you must set an appropriate stop condition for the code and copy
the output models from modout into modin. The code parameters are contained in data but several examples
are provided below to help your understanding of how the code works. You may read through Section 3.1
before trying these but it’s up to you.

2.4.1 Evolving a PMS model to a homogeneous ZAMS model

How do we evolve a PMS model to the ZAMS? The PMS model must be able to radiate thermal energy and
contract but it mustn’t start the transformation of chemical elements through nuclear fusion. To achieve this
kind of control, STARS has entries in the data file that enable, disable or scale various physical processes.

In our case, we want to disable all nuclear reactions. To do so, use your favourite plain text editor (e.g. vim,
EMACS, gedit) to change the first line of data to

1 199 40 10 15 15 3 1 1 0 0 0 1

These three numbers (IX, IY and IZ) decide whether or not the chemical composition is allowed to change
owing to hydrogen burning, helium burning or subsequent reaction chains (carbon burning and beyond). Note
that energy is still produced by these reactions: only the transmutation of elements is stopped.

In addition, we don’t need the model to run for as long. Judging from the full evolution we did before, 3200
steps should do. To tell the code to stop after 3200 steps, change the first line of modin to

10

1.000794E+00 6.308266E+03 0.000000000E+12 9.989717E+48 2.000000E+03 0.000000E+00 199 3200 0 1

The modified number tells the code how many timesteps to take before stopping.
Now, run the code again by executing run. It will eventually stop, as before, but it won’t shouldn’t provide

any errors. This is because our stop condition (3200 steps) allows the code to exit normally, whereas previously
the code stopped because it could not successfully evolve the star past the helium flash.

You can inspect the output again. It is worth plotting the first the timestep number (column 1) against the
effective temperature or surface luminosity (columns 4 and 5). You’ll see that both stop changing just before
the evolution stops. This is the indication that the model has reached the main sequence and stopped evolving.
You should also plot the timestep number against the timestep (column 27) to see that the timestep begins to
increase rapidly because the model is no longer really changing with time.

2.4.2 Changing the mass of a ZAMS model

As a final exercise in the code’s basic usage, we will change the mass of the ZAMS model produced above. To
do so, we will keep nuclear transformations off, fix the model in thermal equilibrium and tell the code to add a
small amount of mass at each timestep.

Our starting model is now the last model from the previous evolution, so we must first copy the new model
to modin. To achieve this, you need to put the last 399 lines of modout in modin. You can do so however you
please but you may want to backup modin before doing so. At the Linux command line, for example, you
could copy last 399 lines by typing

rm modin

tail -399 modout > modin

You could also use a text editor: just copy to modin everything in modout from (and including) the line
1.000794E+00 1.068356E+07 2.515366186E+08 9.989717E+48 2.000000E+03 0.000000E+00 199 3200 3201 0 6.669E+16 0.000E+00

to the end of the file.
To keep the model in thermal equilibrium, we simply tell the code that it cannot generate energy through

contraction or expansion. Change the first line of data to

1 199 40 10 15 15 3 1 0 0 0 0 1

Now, all the output models will be in precise thermal equilibrium.
To tell the code to add mass to the model, modify the fourth number on the 18th line of data to something

small. e.g. 10−9.

18 1.00E+08 0.00E+00 0.00E-01 1.00E-9 0.00E+00 3.00E-01 1.00E-03

This tells the code to increase the total mass of the model by a fraction 10−9 each year.
Now, execute run again. As in the previous run, the code terminates without any error message. To see

what you have done, plot the timestep number (column 1) against the total mass of the star (column 6). You
should find that the model grew up to a total mass of about 5.35M�. If you wanted higher mass models, you
could allow the code to run for longer. Each 1000th model is saved to modout, so you also have new input
models for M/M� = 1.41, 1.96 and 3.74. You can use them as new input models in the same way as we did
above: just copy them to modin. (You can change the frequency of the output models using the data parameter
NSAVE. See below.)

11

12

3
Input and output

The STARS code reads and writes to files by linking the default FORTRAN 77 output files, which have names
matching fort.*. For each of the following files, the relevant fort.* file is specified. The linking is done by
the run script. Each section is titled by the file in question and the FORTRAN unit is given in brackets. Where
an I/O file exists for both star 1 and 2, [2] is appended to the filename. For example, modin provides the input
model for star 1; modin2 for star 2. The section is marked modin[2] (30). For the file linked to star 2, add
20 to the number in brackets. (e.g. modin2 is linked to fort.50.)

Because the code is designed to handle binary evolution, many of the files are doubled up but have the same
format. In general, data files are read from fort.1?, I/O for star 1 (or a single star) is done through fort.3?

and I/O for star 2 is done through fort.5?.

3.1 data (1)

This file contains controls for how the code operates. There are controls for the nature and frequency of output,
the selection of equations that are solved, how the mesh points are distributed and much more. The file has
undergone considerable revision over the course of the code’s life. The present version appears as below and a
description of each parameter and its default value(s) is given in the table that follows. After the functional
control parameters, the file also has a large section that briefly recounts some of the information presented here.

1 NH2 ITER1 ITER2 JIN JOUT NCH JP ITH IX IY IZ IMODE

2 ICL ION IAM IOP INUC IBC ICN IML1 IML2 ISGTH IMO IDIFF

3 NWRT1 NWRT2 NWRT3 NWRT4 NWRT5 NSAVE NMONT

4 EPS DEL DH0 DT3 DDD

5 NE1 NE2 NE3 NB NEV NF J1 J2 IH JH

6 ID(30) - 3 lines

7 NE1 NE2 NE3 NB NEV NF J1 J2 IH JH

8 ID(90) - 3 lines

9 ISX(45) - 3 lines

10 DT1 DT2 CT(10)

11 ZS ALPHA CH CC CN CO CNE CMG CSI CFE

12 RCD OS RML RMG ECA XF DR

13 RMT RHL AC AK1 AK2 ECT TRB

14 IRAM IRS1 VROT1 IRS2 VROT2 FMAC FAM

15 IVMC TRC1 IVMS TRC2 MWTS IAGB ISGFAC FACSGMIN SGTHFAC

13

Name Description Default
NH2 The desired number of mesh points. If different from that in modin, the code

interpolates the given model to give the new one, provided that NCH is greater
than or equal to 1.

199

ITER1 The maximum number of iterations allowed on the first timestep. 10
ITER2 The maximum number of iterations allowed on later timesteps. 10
JIN The number of independent variables of the H and DH arrays to be read in. 15
JOUT The number of independent variables written to output models. 15
NCH Determines how the model is re-meshed. If NCH=1, the mesh is fixed. If

NCH=2, the mesh is allowed to vary but the composition is not modified. If
NCH=3, the mesh is allowed to vary and, on the first step, the composition is
reset to the values specified in data.

1,2,3

JP Determines whether the last set of corrections to the previous model is used
as the first correction to the current model. If JP=0, the corrections are reset
to zero. If JP=1, the last set of corrections to the previous model is used as
the first correction to the current model.

1

ITH The thermal energy generation rate is ITH×T ∂ s/∂ t. Setting ITH to zero
means T ∂S/∂ t is ignored. i.e. there is no thermal evolution of the star. This
is sometimes useful when creating new models.

1

IX Determines whether hydrogen is converted into helium. If IX=0, hydrogen is
not converted into helium but the energy produced by the nuclear reactions is
still included. If IX=1, hydrogen is converted into helium normally.

1

IY As for IX but controls alpha-burning. 1
IZ As for IX but controls carbon-burning. 1
IMODE Determines whether the code operates in pseudo-binary mode or full binary

mode. If IMODE=1, only the equations for one star are solved. If IMODE=2,
the equations for both stars are solved.

1

ICL If ICL=1, the effects of Coulomb interactions are included in the calculation
of the pressure ionization.

1

ION The number of elements that for which the the ionization state is calculated.
The default value includes hydrogen and helium. The choices 3, 4 and 5
include carbon, nitrogen and then oxygen. i.e. ION=5 calculates the ionization
of all five elements.

2

IAM If set to zero, the program will use integer atomic weights. 1
IOP Used to select spline interpolation in opacity. If set to one or less the old style

opacity tables are used. If IOP is 1, spline interpolation will be used. If set to
zero, a linear interpolation in opacity will be used. Setting this to 5 will use
the new opacity tables with variable C/O composition.

5

INUC If INUC≥10, weak screening is employed in the nuclear reaction rates. 0
IBC No current function.
ICN Used for CNO equilibrium on the main sequence. If ICN=1, a baryon cor-

rection is applied to the hydrogen evolution equation so that hydrogen is
not converted into helium but other elements can achieve their equilibrium
abundances. The timestep is also affected when ICN=1.

0

IML1

IML2

Specify the mass-loss rates for stars 1 and 2, respectively. 0 corresponds to no
mass loss, 1 to Reimers mass loss, 2 to Blöcker, 3 to Vassiliadis & Wood and
4 to Wolf-Rayet mass loss.

0

ISGTH Turns on thermohaline mixing. Used if you want to compute models with
accretion or to provide extra mixing on the giant branch in low mass stars.
See also SGTHFAC.

1

14

IMO Turns on the molecular opacity routines in statef if IMO=1. These are
only really important for cool (T < 104 K) stars that are carbon-rich, such as
low-mass AGB stars and carbon-enhanced metal-poor stars.

0

IDIFF Turns on gravitational settling, as well as atomic and thermal diffusion. This
probably only matters for low-mass stars without significant convective en-
velopes.

0

NWRT1 Prints the internal details of every NWRT1th model to out. 100
NWRT2 Prints the internal details of every NWRT2th meshpoint when the internal model

is printed to out.
1

NWRT3 The number of ‘pages’ printed out for every NWRT1th (i.e. detailed) model. 1
NWRT4 Prints a short summary of every NWRT4th model. 1
NWRT5 Prints a one-line summary of each iteration of each model, excluding the first

NWRT5 iterations of each model.
0 (2)

NSAVE An output model is saved to modout every NSAVEth timestep, in the same
format as the input model, that can be used for a subsequent run. The final
model is automatically saved.

100

NMONT A detailed model for use as an input file for the Montage post-processing code
is printed out every NMONT models. If zero, no output is produced.

0

EPS The accuracy to which the equations are expected to be solved. EPS must be
greater than DH0. i.e. you can’t solve to a greater degree of accuracy than the
derivatives.

10−6

DEL The maximum value in ERR for which the whole correction is applied by the
solution subroutine. Above this limit, the correction is reduced by a factor of
ERR/DEL.

0.01

DH0 Affects the value of the increments of the variables during the numeric dif-
ferentiation. It is no longer so important, now that everything is in double
precision.

10−7

DT3 No current function.
DDD Sets the modulus of the total increment that is desired in one timestep. 0.5–4
NE1 The number of 1st order equations that the code uses. 6
NE2 The number of 2nd order equations that the code uses. 5
NE3 This defines a subset of the 1st order equations that may be defined at 3, rather

than two, adjacent meshpoints. At present, this is not implemented in the
code.

0

NB The number of boundary conditions possessed by the 1st order equations at
the stellar surface.

3

NEV The number of ‘eigenvalues’ (i.e. quantites that don’t vary with the mesh)
used by the model. This is usually the mesh spacing function.

1

NF The number of variables being passed into the equns routines. 30
J1, J2,

IH, JH

Variables for debugging. A suitable choice gives an output via printc that
can be used to see if funcs and equns are setting up the difference equations
correctly. The default values suppress debugging output.

0, 0, 0, 99

15

ID(90) There are two blocks of numbers for ID: one for the evolution package
(funcs1, equns1) and the other for the nucleosynthesis package (funcs2,
equns2). Together with the preceding line (containing NE1, NE2, NB, NEV, NF,
J1, J2, IH, JH), these define in what order the variables are solved for (first
line), in what order the equations are solved (second line) and in what order
the boundary conditions are solved (third line). For the evolution of single
stars the usual values are:

1 2 4 5 3 9 10 8 7 6 0 0 0 0 0

6 7 8 9 4 2 1 3 5 0 0 0 0 0 0

4 5 6 7 2 3 1 2 3 1 0 0 0 0 0

ISX(45) 3 lines of 15 numbers that determine which variables of the internal structure
are printed to out. The first 15 values define what will be placed on the first
‘page’, with the next two sets of 15 defining the output to the extra pages. The
options are:
1. ψ 10. 1H 19. Eth 28. S
2. P 11. 4He 20. Enuc 29. L/LEdd
3. ρ 12. 12C 21. Eν 30. µ

4. T 13. 14N 22. δm 31. µideal
5. κ 14. 16O 23. k2 32. σthermohaline
6. ∇ 15. 20Ne 24. n/(n+1) 33. Ebind
7. ∇ad 16. 24Mg 25. Uhom 34. β = Prad/Ptot
8. ∇rad−∇ad 17. r 26. Vhom
9. m 18. L 27. U
23 is the square of the radius of gyration; 24–26 are homology invariants.

DT1 Places a lower limit of DT1×∆t on the the size of the next timestep, where ∆t
is the size of the current timestep.

0.8

DT2 Places an upper limit of DT2×∆t on the size of the next timestep. If both
DT1 and DT2 are set to 1, the timestep is constant, unless the model fails to
converge, in which case it is reduced by 20% for the next attempt at a solution.

1.2

CT(10) Coefficients used in the mesh spacing function, Q.
ZS The stars metallicity. Make sure this matches the value in the opacity tables! 0.02
ALPHA The mixing length. The value chosen should be based on calibration to a solar

model but the default value is not a calibrated value.
2.00

CH-CFE Values for initializing the abundances of 1H through to 56Fe of a model. The
metals are expressed as a fraction of the total metallicity. These are only used
for ZAMS models (or better still, pre-MS models) with NCH=3.

RCD The diffusion coefficient for convective mixing is RCD×2(∇−∇ad)/tnuc. 106

OS Convective overshoot parameter. Zero implies no overshoot. 0 (0.12)
RML Used to set the amount of Reimers (1975) mass loss. This value is the

parameter η such that the mass loss rate is Ṁ = η×4×10−13 M� yr−1 .
0

ECA Used in the evolution of EC. This is useful when creating pre-MS models. 0
XF Defines the boundary of a core, for printout purposes only, to be when the

abundance equals XF.
0.1 (0.3)

DR Defines the boundary between a convection and semiconvection zone, for
printout purposes only, to be at ∇−∇ad =DR.

0.01

RHL Defunct. 0
AC Defunct. 1.0

16

AK1 Used in the AGB mixing formula (see Stancliffe et al., 2004, for details). Sets
β for the H-rich regions.

1.0

AK2 Used in the AGB mixing formula. Sets
for the H-poor regions.

10−4

ECT A constant logarithmic increase or decrease for EC (see Section 3.5), which
can be used to push a ZAMS star back up its Hayashi track to make a pre-MS
star.

0 (10−4)

TRB Used in setting the surface conditions of binaries. Effectively places the star
in a radiation bath of temperature TRB.

0

IRAM Resets the orbital angular momentum. If IRAM=1, the code recalculates the
orbital angular momentum using the period from modin.

0

IRS1 Resets the spin angular momentum of star 1. If IRS1=1, the code sets the spin
of star 1 using the rotational speed provided in VROT1.

0

VROT1 The desired rotational speed of star 1, in kms−1 . Used only if IRS1=1.
IRS2 As for IRS1, but for star 2.
VROT2 As for VROT1, but for star 2.
FMAC The fraction of matter accreted during mass transfer. Any matter not accreted

is lost from the system and carries away angular momentum.
1.0

FAM The fraction of angular momentum transferred in the accreted matter that is
transferred to the accreting star.

1.0

IVMC Used to turn on the viscous mesh. Used in conjunction with TRC1. Useful for
evolving AGB stars and possibly in other situations.

0

TRC1 The mesh point at which the code switches from viscous to non-viscous
meshing. The transition must be smooth so there is probably some degree of
viscosity at k=TRC1. If TRC1≥NMESH, there is no viscous meshing. It is also
unwise to try and lock the majority of the star with the viscous mesh. You
have been warned.

700

IVMS Used to turn on the viscous mesh at the star’s surface. Used in conjunction with
TRC2. This is useful for suppressing loops in the HR diagram for post-AGB
objects (and possibly other shell-burning stars).

0

TRC2 As TRC1. 300
MWTS Unlike the core viscous meshing, which is designed to be invoked at low

timesteps, the surface viscous mesh takes a constant mesh weighting. If this
is high enough, the surface mesh points only move around slowly thereby
reducing the problem of numerical diffusion. If MWTS=1, the points do not
move at all. This limits numerical diffusion but can cause convergence failures.

0.75

IAGB Switches on the AGB-specific modification by Stancliffe et al. (2004), includ-
ing the more realistic mixing, the AGB timestep control and the AGB specific
mesh-spacing function. Note that you still have to change the coefficients of
the mesh spacing function!

0

ISGFAC Switches on the reduced mixing convergence aid. Used with FACSGMIN. 0
FACSGMIN Sets the initial mixing reduction factor for assisted convergence. Setting this

to 1 is equivalent to setting ISGFAC=0.
102

SGTHFAC Boosts the efficiency thermohaline mixing by a factor of SGTHFAC. It has been
suggested that 102 is appropriate for getting 3He-induced extra mixing on the
giant branch in low-mass stars.

102

17

3.2 COtables (10)

This file contains the opacity tables used for calculating the opacity with variable carbon and oxygen abundances.
Each table begins with a row of five numbers. The first three give the hydrogen, helium and metal abundances
of the table and the next two give the scaled carbon and oxygen abundances. For carbon, there is no carbon
enhancement if this number is 0. If it is 1, the abundance is 1−X−Z, where X is the hydrogen abundance and
Z the metallicity.1 There then follow 141 lines of 32 numbers. The first number in each line is the temperature
in log10 T . The remaining numbers are the opacities running from R = ρ/T 3

6 = 8 to R = 7.

3.3 physn.dat (11)

This contains the input physical data, including the original style of opacity table, the neutrino loss rates and
the charged particle reaction rates. The file starts with a single number defining how many opacity tables of
different composition there are. This is followed by a line defining the composition of each table using the
formula m = 2X +Y +1, where Y is the helium abundance. The n tables follow in 10×9 blocks. After this
comes the neutrino loss rate and then the charged particle reaction rates. The latter have been updated to use
the most recent rates available in 2004.

3.4 nrate.dat (13)

This contains the reaction rates for the neutron capture reactions used in the nucleosynthesis subroutines. Each
set of reaction rates comes as a block of 200 numbers in 20 rows and 10 columns, just like the charged particle
reaction data.

3.5 modin[2] (30)

These are the input model files for the stellar models. The file modin corresponds to star 1 or a single star. The
file modin2 corresponds to star 2 and it not included in the basic download. The first lines of both files is of the
format

1.000000E+00 2.173234E+03 0.000000000E+10 1.323350E+81 2.000000E+10 0.000000E+00 199 99900 0 1 6.680E+16 0.000E+00

The numbers are the star’s mass, the current timestep size, the model’s age, the period of the binary,2 the total
mass of the binary, an artificial energy generation term, the number of mesh points in the model, the desired
number of models to be computed, the starting model number, a number determining whether this is star 1 or
star 2 of a binary, the pressure in the H-burning shell and the pressure in the helium burning shell.

There then follow the lines describing the model itself. There can be up to 15 variables in this file at present
and all are currently used.3 In order, the variables are

1Shouldn’t helium be included too?
2The code always thinks you are dealing with a binary, even if you only care about evolving one star.
3This is not strictly true. In modin2, the value of the orbital angular momentum is not used. One could replace this with the

eccentricity of the orbit but that would stop modin and modin2 from being interchangeable.

18

1. log f a parameter related to the electron degeneracy
2. logT log of the temperature in Kelvin
3. XO the mass fraction of 16O
4. logm log of the mass in units of 1033 g
5. XH the mass fraction of 1H
6. ∂Q/∂K the gradient of the mesh spacing function
7. logr log of the radius in units of 1011 cm
8. L luminosity in units of 1033 ergs−1

9. XHe the mass fraction of 4He
10. XC the mass fraction of 12C
11. XNe the mass fraction of 20Ne
12. XN the mass fraction of 14N
13. Horb the orbital angular momentum in code units
14. Hspin the spin angular momentum of the star
15. X3He the mass fraction of 3He

3.6 nucmodin[2] (31)

These are the input model files for the nucleosynthesis routines. The first line of each file is the same as the first
line of modin or modin2 file. There then follow the lines of the model itself. Each line has 50 numbers. These
are the abundance by mass fraction of all the elements used by the nucleosynthesis subroutines. In order, they
are

1. g, gallinoes 11. 17O 21. 26Alm 31. 56Fe 41. 1H
2. n 12. 18O 22. 26Alg 32. 57Fe 42. 4He
3. 2H 13. 19F 23. 27Al 33. 58Fe 43. 12C
4. 3He 14. 21Ne 24. 28Si 34. 59Fe 44. 14N
5. 7Li 15. 22Ne 25. 29Si 35. 60Fe 45. 16O
6. 7Be 16. 22Na 26. 30Si 36. 59Co 46. 20Ne
7. 11B 17. 23Na 27. 31P 37. 58Ni 47. Unused
8. 13C 18. 24Mg 28. 32S 38. 59Ni 48. Unused
9. 14C 19. 25Mg 29. 33S 39. 60Ni 49. Unused

10. 15N 20. 26Mg 30. 34S 40. 61Ni 50. Unused

3.7 out[2] (32)

This file is useful as a reference for what is going on as a star evolves. The file starts with a copy of the data
block used for the star’s evolution. Below this is a print out of the first line of modin (or modin2). The structure
of the remaining output depends on the values that were chosen in data (see Section 3.1). Typically, the code
produces a short four line summary of the model (the frequency of which depends on the value of nwrt4), like

1 447 dt/age/MH/MHe tn/tKH/Mb P/rlf/dM LH/LHe/LC Lth/Lnu/m H1 He4 C12 N14 O16 Ne20 He3 psi dens temp

2 1.0000 1.977573088E+08 1.067E+10 1.443E+81 9.904E-01-2.764E-04 0.37009 0.60941 0.00001 0.00570 0.00895 0.00198 0.00001 -1.539 2.1457 7.1818 cntr

3 0.0001 4.541134415E+09 1.306E+07-1.253E+02 1.620E-33 2.154E-02 0.70000 0.28000 0.00346 0.00112 0.00964 0.00198 0.00003 -15.823 -6.7799 3.7594 srfc

4 0.0000 0.6645 0.3145 2000.0000 0.000E+00 0.000E+00 0.0001 0.37009 0.60941 0.00001 0.00570 0.00895 0.00198 0.00001 -1.539 2.1457 7.1818 Tmax

The first column contains the number of the model (in this case 447) and the mass of the star being evolved,
in solar units (1.0000). The next number is the location in mass of the boundary of the hydrogen-burning
shell and the last is the location in mass of the boundary of the helium-burning zone. The locations of these
boundaries are determined by the parameter XF in data. Specifically, the boundaries are placed where X <XF.

In the second column, we have the current timestep (1.98×108 yr) and, below it, age (4.54×109 yr) of the
model, both in years. The two numbers below these are the masses of hydrogen (0.6645) and helium (0.3145)

19

in the star, in solar units. The next column gives the nuclear and Kelvin-Helmholtz timescales in years and the
mass of the binary system in solar units.

In column four, we find the period of the binary system in days, the difference between the stellar and
Roche Lobe radii (in units of the stellar radius) and the rate of mass transfer. Next come two columns giving
information about the luminosity of the system. The first of these columns contains the luminosities from the
fusion of hydrogen, helium and carbon.4 The second column gives the thermal and nuclear luminosities. The
units are L� and the m at the base of this column is the mass location of the region of maximum temperature.

The remaining entries give the abundances of nuclear species as well as the electron degeneracy parameter
Ψ, the density and the temperature at the centre, surface and point of maximum temperature, as noted in the
last column by cntr, surf and Tmax.

After this block come another 4 lines proving information about the model. They take a form like

1 0.0000 0.976 -0.976 1.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.1941 0.0753 -.04571 -0.0009 -0.0110 447

2 199 199 109 -109 3 -3 0 0 0 0 0 0 0 0

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.261E+01 7.306E-31 0.000E+00

4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

On the first line, the first number is the mass interior to the point at which carbon burns. The next twelve are
the masses at which the model changes from convective regions to radiative regions (and vice versa). The next
numbers are log10 mr2k2 evaluated at some point close to the surface5, a homology constant k2, log10(R∗/R�),
log10(L∗/L�) and the model number again.

On the second line, the first number is the mesh point marking the outer boundary of the hydrogen-burning
region (which can be a shell or a core). The next number is the same quantity for the helium-burning region. The
last 12 numbers of the second line say where the boundaries between convective and radiative regions are. Semi-
convective boundaries are determined by the parameter DR in data and are reported where 0 < ∇−∇ad <DR.
Boundaries between convective and semi-convective regions are marked by negative signs. Convective-radiative
boundaries have no sign.

On the third line, the first three numbers are the mass locations of the points of maximum hydrogen, helium
and carbon energy generation. The next 12 numbers are the mass locations of the boundaries of burning regions.
The final three numbers on this lines are the values of the energy generation rates for hydrogen, helium and
carbon at their respective maxima.

On the last line, the first three numbers are the the mesh point numbers of the points of maximum hydrogen,
helium and carbon energy generation. The next twelve numbers are the mesh point numbers of the location of
burning shell boundaries. The last value is d logr/d logm.

Every NWRT1th model, the code produces a detailed profile of the stellar model. The columns to be printed
are selected via ISX in data.

3.8 plot[2] (33)

These are output files that are useful for plotting the characteristics of the models as they evolve. It is possible
to use this file to create Kippenhahn diagrams of the interior. Each line corresponds to one stellar model and
the columns are, from left to right,

1. N model number
2. t age in years
3. log10(R∗/R�) logarithm of radius in solar units
4. log10 Teff logarithm of effective temperature in kelvin
5. log10(L∗/L�) logarithm of luminosity in solar units
6. M∗/M� mass in solar units

4Actually, the third number is the luminosity of all nuclear burning that isn’t hydrogen or helium.
5It is not clear what this number actually represents nor why you would want it. It may be changed or the documentation updated.

20

7. MH/M� mass of H-exhausted core in M�
8. MHe/M� mass of He-exhausted core in M�
9. LH logarithm of hydrogen luminosity in solar units

10. LHe logarithm of helium luminosity in solar units
11. LC logarithm of carbon luminosity in solar units

12–23. mconv mass co-ordinates of convective boundaries
24. mεH,max mass co-ordinate of maximum energy generation from H-burning
25. mεHe,max mass co-ordinate of maximum energy generation from He-burning
26. log10 κ logarithm of the opacity
27. ∆t timestep in years
28. XH,s surface abundance of hydrogen
29. XHe,s surface abundance of helium
30. XC,s surface abundance of carbon
31. XN,s surface abundance of nitrogen
32. XO,s surface abundance of oxygen
33. X3He,s surface abundance of 3He
34. R∗/RRL radius as fraction of Roche lobe radius
35. J1 spin angular momentum of star
36. Pbin period of binary in days
37. rsep separation of binary
38. M1 +M2 binary mass
39. Jorb orbital angular momentum
40. J1 + J2 total spin angular momentum
41. Jtot total angular momentum
42. ωorb angular freq. of orbit
43. ω1 angular freq. of star
44. I1 moment of inertia of star
45. Iorb moment of inertia of orbit
46. Ṁ∗ mass loss rate

47–58. mshell mass location of burning shell boundaries
59–70. mth location of boundaries of regions where thermohaline mixing is active

71. Mconv-env mass in the convective envelope (if there is one)
72. Rconv-env radius of the base of the convective envelope (if there is one)
73. log10 ρc logarithm of central density
74. log10 Tc logarithm of central temperature

3.9 modout[2] (34)

These are where the code outputs models to. To restart a run from a given point, you need to copy the
appropriate model from modout and put it into modin. Usually you would simply use the last output model but
you could choose any model from modout. The format of modout is identical to that of modin. The frequency
with which models are written to the output is controlled by NSAVE in data. The last model of a run is always
printed.

3.10 nucmodout[2] (35)

nucmodout is to nucmodin what modout is to modin.

21

3.11 syntha,synthb,synthc[2] (36,37,38)

These contain the detailed models for the nucleosynthesis files. There are 3 synth files: syntha, synthb and
synthc. syntha has the lightest species in it starting from the gallinoes and going up to 22Ne. synthb has
22Na up to 34S and synthc has the iron group elements as well as the nucleosynthesis code’s values of the
structural isotopes 1H, 4He, 12C, 14N, 16O and 20Ne. All the abundances are printed with with the meshpoint
number in the first column and the mass co-ordinate in the last column.

Detailed nucleosynthesis models are printed out with the same frequency and number of mesh points as the
detailed structure models. These settings are controlled by NWRT1 and NWRT2. They are not printed if you are
not using the nucleosynthesis routines.

3.12 surface[2],centre[2] (39,40)

These files contain the abundances of all the isotopes in the structure code at the surface and centre in the order
they are listed above in nucmodin (see Section 3.6). They are preceded by the model number and the age to
aid plotting.

In addition, surface also contains data that is useful for computing yields. The abundances are followed
firstly by the wind mass-loss rate (in M� yr−1) and the mass-loss rate from non-conservative mass transfer (or
mass lost during common envelope evolution). The final entry is the timestep in years. From all this data, one
can compute the yield for every species using a separate FORTRAN program. This is not presently included
with the code distribution but it is the maintainer’s intention to include it later.

3.13 sprocess[2] (41)

Originally, these file were going to be used to supply input to a post-processing code to compute s-process
nucleosynthesis in AGB stars. This has largely been abandoned in favour of using the MONTAGE code to do
post-processing in general (see the next section). However, this file does contain useful information like the
temperature in the various burning shells. The entries are

1. the model number.
2. the model age in years.
3. the mass co-ordinate of the H-burning shell.
4. the mass co-ordinate of the He-burning shell.
5. the intershell mass (i.e. 3-4, remember this was originally designed for AGB stars!)
6. the stellar mass.
7. the abundance of 14N in the ashes of the H-burning shell.

8–19. the temperature at the convective boundaries, in units of 108 K.
20–31. the density at the convective boundaries.

32. the temperature at the base of the convective envelope.
33. the temperature in the H-burning shell (at the point that XH = 0.345).
34. the temperature at the base of the H-burning shell (at the point that XH = 0.05).
35. the temperature in the He-burning shell (at the point that XHe = 0.45).
36. the temperature at the base of the He-burning shell (at the point that XHe = 0.05).
37. the Mira pulsation period in days, based on the pulsation law in Vassiliadis & Wood (1993).
38. the absolute value of the mass-loss rate in M� yr−1 .

22

3.14 montage[2] (42)

This is currently very experimental output. The hope is to be able to take output from the stellar evolution code
and feed it in to a post-processing nucleosynthesis routine (specifically Ross Church’s MONTAGE program) to
calculate nucleosynthesis for a wider range of isotopes (including the s-process isotopes) than the evolution
code can handle.

The output first throws out a line including the number of mesh points, the model number, age in seconds
followed by the hydrogen and helium luminosities in L�. There then follows a detailed model with the
temperature in K), density in gcm−3 , mixing length in cm, convective velocity in cms−1 , radius in cm, mass
in M� and the 1H, 4He, 12C, 14N and 16O abundances printed for each mesh point.

23

24

4
Code structure

A new section describing some of the broader things used in the code so that people know what they’re dealing
with when they start modifying it.

4.1 Architecture

The code has a few consistent design features across all the subroutines that should be known when making
modifications. Above all, users who wish to tamper with the code must be familiar with the FORTRAN 77
standard. One example of such a ‘feature’ is the fixed width of input lines (64 characters) unless the appropriate
compiler flag is issued at compilation. Another ‘feature’ is the reservation of the first 7 characters of each line
for indexing.

This section does not claim to justify these design choices. It only describes what they are.

4.1.1 Common blocks

The code uses ‘common’ blocks. These are basically a way of declaring global scope for variables, which
introduces a number of things that must be kept in mind when viewing or modifying the code.

First, note that a single common block is effectively one large array with names for the elements of the
array. This means that, given a common block with two elements ...varA,varB..., the coder can access varB
by referring to varA(2). Unless specifically instructed, this doesn’t, by default, produce any warnings or errors
when compiling. There are (or, at least, were) parts of the code where this trick was used. Warrick Ball is sure
that the nuclear reaction rates were abused in this manner.

Secondly, though less critically, variable names need not be the same between subroutines. For example,
the variables in common block INF go by many names across different subroutines. When tracking a variable
through the code, keep in mind that it might appear to vanish when really it’s just changed its name.

4.1.2 I/O and linking

All of the code’s input and output is done by reading from or writing to the default output files, which have
filenames that match fort.*. For example, when the code says WRITE(32,99003), it writes output to
fort.32 using the fixed format defined by the line prefixed with 99003 in the same source file. The link to real
filenames (e.g. COtables, out) is made by the execution script, run. Thus, trying to run bs directly probably
won’t work because the wrong data will be read.

The fort.* files should be cleaned up by run before and after execution to avoid confusion. If a run is
aborted for some reason, the fort.* files may persist but they shouldn’t cause any problems.

25

4.1.3 Code units

The code generally defines masses in units of 1033 g, lengths in 1011 cm and luminosities in 1033 ergs−1 . In
this form, many factors of 1011 cancel out so the code is a bit neater. In these ‘Eggleton’ units, the solar mass,
luminosity and radius are 1.989, 3.844 and 0.696. Tinkerers should be aware of these units when adding new
routines. Adrian Potter at least once found his diffusion coefficients were out by a factor of 1022. Eggleton
units were to blame!

4.2 Subroutines

A list of all of the subroutines, in alphabetical order, is given below. The relevance of the subroutines vary
wildly. Some are mostly fixed black boxes (e.g. difrns); others must be modified extensively when including
new processes (e.g. funcs1).

compos Prevents abundances from becoming negative by rounding them to zero when smaller
than 10−12.

consts Sets up physical constants.
diffusion

diffusion2

difrns Varies the equations to calculate numerical derivatives that populate the matrix that is
inverted.

divide Performs the matrix inversion. Intimately connected to elimn8. See Appendix C for
details about how the inversion is performed.

elimn8 Does some matrix multiplication to streamline the inversion. Intimately connected to
divide. See Appendix C for details about how the inversion is performed.

equns1 Sets up difference equations for the structure and main composition variables.
equns2 Sets up difference equations for the minor composition variables.
fdirac Calculates Fermi–Dirac integrals by using the fitting function described by Eggleton

et al. (1973).
funcs1 Evaluates functions of the variables that are required for the difference equations. In

effect, most of the structure equations (e.g. hydrostatic equilibrium) are described here.
funcs2 Evaluates functions of the minor composition variables that are to be calculated.
main The primary execution loop. This is where the code starts.
massloss Calculates mass-loss rates. Mass loss rates were previously computed in funcs1 but

it is now done in this separate subroutine. See the entries for IML1 and IML2 in data

(Section 3.1) for the available options.
netyield

neutron

nucrat Returns nuclear reaction rates.
nucrat2

opacty Old opacity routine. Called by using IOP=0 or 1.
opspln Combined with spline, calculates spline interpolations.
pressi Calculates the contribution of pressure ionization in the equation of state.
printa The main input subroutine. Also provides initial output and advances the evolution by

one timestep at a time.
printb The main output subroutine.
printc Produces additional debugging output, which is suppressed by default. See the entry

for J1, J2, IH and JH in data (Section 3.1).
remesh Re-initializes the mesh, if necessary. Only called on the first iteration.

26

solver Primary controller for the Newton–Rhapson iterations of the relaxation algorithm. This
subroutine contains most of the convergence tests.

spline Combined with opspln, calculates spline interpolations.
statef The equation of state subroutine.
statel A driver for the equation of state that checks whether it needs to be recalculated. It

basically prevents the code from recalculating the state variables when it isn’t necessary.
xopac New opacity routine by Eldridge & Tout (2004). Called by using IOP=5, which is the

default choice.

27

28

5
Input physics

29

30

6
Advanced user guide

31

32

A
STARS cheat sheet

Plot
1. N 9. LH 28. XH,s 36. Pbin 44. I1 74. log10 Tc
2. t 10. LHe 29. XHe,s 37. rsep 45. Iorb
3. log10(R∗/R�) 11. LC 30. XC,s 38. M1 +M2 46. Ṁ∗
4. log10 Teff 12–23. mconv 31. XN,s 39. Jorb 47–58. mshell
5. log10(L∗/L�) 24. mεH,max 32. XO,s 40. J1 + J2 59–70. mth
6. M∗/M� 25. mεHe,max 33. X3He,s 41. Jtot 71. Mconv-env
7. MH/M� 26. log10 κ 34. R∗/RRL 42. ωorb 72. Rconv-env
8. MHe/M� 27. ∆t 35. J1 43. ω1 73. log10 ρc

Out and code variables

1. ψ 9. m 17. r 25. d logr/d logm 1. log f 8. L33
2. p 10. XH 18. L 26. d log p/d logm 2. logT 9. XHe
3. ρ 11. XHe 19. εth 27. u 3. XO 10. XC
4. T 12. XC 20. εnuc 28. S 4. logm33 11. XNe
5. κ 13. XN 21. εν 29. L/LEdd 5. XH 12. XN
6. ∇a 14. XO 22. δm 30. w · l 6. C
7. ∇ 15. XNe 23. k2 7. logr11
8. ∇r−∇a 16. XMg 24. n/n+1

Mesh Function

Q = log

(
1
c6

(
m
M∗

)2/3

+1

)
− c3 log

(
r2

c8
+1
)
+ c7 log

(
T

T + c0

)

+c4 log p+ c5 log
(

p+ c9

p+ c−1

)
+ c2 log

(
p+ c10

p+ c−1

)
c0 = 20000K
c−1 = 1010c1

33

34

B
Veteran tips

This appendix outlines tips for the code that you might find useful. Each subsection describes a trick that
at least one previous user has used to make their use of the code more efficient. If you have your own dark
methods, share them with us and they may find themselves included here!

B.1 Comments in I/O files

All of the STARS code’s input and output is in the form of fixed-format plain-text files. This section briefly
discusses a few useful ways of abusing the fixed formatting. In essence, all the tricks make use of the fact that
any extra information, outside the bounds of the fixed formatting, is ignored.

For example, the first line of data looks like

199 40 10 15 15 3 1 1 1 1 1 1

You might forget what these numbers mean. The code only knows to read precisely the correct number of
numbers in each line, so we can remind ourselves what the last, say, three numbers are by leaving notes to the
right-hand side.

199 40 10 15 15 3 1 1 1 1 1 1 ... NCH JP ITH IX IY IZ IMODE

Naturally, you can write endless remarks after the last line, too. The default data file has such a block after the
controls specified in Section 3.1.

The fixed formatting actually allows one to store a complete sequence of evolutions in a single modin file.
For example, suppose we created and evolved a 5M� ZAMS model by allowing the default 1M� model to
contract on the ZAMS, adding mass until M∗ = 5M� and finally evolving the model. After allowing the default
model to contract, you would normally copy the last (or other suitable) output model from modout to modin.
Instead copy the model to the beginning of modin but leave the old model in place. The code only reads the
number of lines it needs and then stops. The extra lines that correspond to the old models will not be read. This
is useful if you are experimenting with a series of models to achieve something slightly exotic. If you find you
have created an unworkable model, you can easily roll back to a previous, working, model.

B.2 Command line tools for manipulating plain text

Because the input and output is all in fixed-format plain-text files, it is easy to manipulate using basic command
line tools in GNU/Linux and other Unix-like operating systems.

35

head Reads the first 10 lines of a file. If the first N lines are desired, you can use head -N

<file>.
tail Like head but for the last 10 (or N) lines of a file. Useful for retrieving the last model

from modout, which occupies the last 2N +1 lines of the file.
awk A fairly complicated tool but capable of printing individual columns by using awk

’print $a,$b’ <file>, where a and b are numbers. So, for example, to extract only
the 4th and 5th columns of plot (for a theoretical HR diagram), you would enter awk
’print $4,$5’ plot and the result would be displayed at the standard output.

grep Returns lines that match a given expression. Useful for isolating parts of out. Its cousin
egrep matches regular expressions.

sed A tremendously powerful command line tool that can perform a number of tasks including
(but far from limited to) printing a range of lines, printing every nth line and deleting
blank lines.

If you find yourself frequently gathering up fragments of the STARS output, it is recommended that you
consider using some of these tools.

As an example, suppose we wanted to retrieve the model profiles in out without the line breaks every 10th
line. The command

grep -A 219 ’ K ’ out

returns the 219 lines following a match to ‘ K ’, which always precedes the profiles. To delete the blank
lines, use sed to delete lines that simply start and end.

grep -A 219 ’ K ’ out | sed ’/^\$/d’

where I have used the appropriate regular expression. The syntax sed ’/expr/d’ deletes lines on which expr

appears. You may also wish to delete the ‘header’ line of the models, in which case

grep -A 219 ’ K ’ out | sed ’/^\$/d’ | sed ’/ K /d’

will suffice.
If you master the command line tools above, you will find yourself able to effortlessly make elaborate

constructions from the code output.

B.3 Separating models in subdirectories

If you intend to run large numbers of models, having the executable and I/O in a single folder causes problems
because of the I/O linking. In short, two runs of the code in the same place will try to link the same files and,
unsurprisingly, quickly produce garbage. The solution is to separate separate runs into separate folders and
modify run to link the data files in their new relative locations.

The script run starts with variables that specify where files are.

#!/bin/csh

set BSDIR=.

set DATDIR=$BSDIR/dat

set EXEDIR=$BSDIR

Specifically, they say where the physical data files (e.g. opacities) and the executable are. It is presumed that
the model input is in the same folder as the script.

Suppose we want to run 3 models with masses 1, 3 and 5M� in parallel and that we have the relevant input
files available. Suppose also that STARS is being run in the current directory /home/user/stars/. Create

36

subdirectories m1/, m3/ and m5/ and move the model files (data, modin and, if necessary, nucmodin) to the
relevant subdirectory. The executable script must be modified to reflect the locations of all the information.1

#!/bin/csh

set BSDIR=/home/user/stars

set DATDIR=$BSDIR/dat

set EXEDIR=$BSDIR

Now, to evolve the 1M� model, change to the relevant subdirectory (cd m1) and run ../run. If you prefer,
you can create a symbolic link to the script with ln -s ../run run. All of the output is produced in the
relevant subfolder.

You may use this technique to create large numbers of models and even multiple layers of subfolder. You
could have folders matching stars/popI/m??.? and stars/popII/m??.? to represent different masses
and metallicities but you must be careful to make sure that the appropriate opacity tables are linked for the
different models. The executable script is neatly organized and straightforward to edit and you are invited to do
so to streamline your own use of the code.

1You can do this with relative folders like .. but absolute folders are used here.

37

38

C
Matrix inversion

The following section is drawn from an obscure plain-text file called writeup.fig that was included with
Peter Eggleton’s documentation from TWIN/EV. It is possibly the only extant explanation of how the matrix of
derivatives is manipulated, by subroutines divide and elimn8, to improve the inversion that is required for
the relaxation method. It also explains the meaning of the parameters NE1, NE2, NE3, NB, NEV, NF, J1, J2, IH,
JH, as well as the arrays ID. These are all specified in data and tell the code what the structure of the matrix of
derivatives is.

Below is a transcription of Peter Eggleton’s original documentation. It is not quite verbatim but it is
believed that his meaning and, to some extent, style have been preserved. Each part of the explanation begins
with the present state of the matrix of derivatives, which shall be called A. Its components are, crudely,

Ai j =
∂ (equation)i

∂ (variable) j
, (C.1)

where ‘equation’ is either a difference equation or boundary condition and ‘variable’ is an intrinsic code
variable. For illustrative purposes, the system of equations has been trivialized down to

• 6 variables: f , T , m, X , r and L;

• 3 meshpoints: surface, interior and centre, from left to right;

• 1 eigenvalue: C, at the far right;

• 3 zeroth-order surface BCs in the first three rows;

• 1 first-order surface BCs in the fourth row;

• 5 first-order DEs;

• 1 second-order DE;

• 5 first-order DEs again;

• 1 first-order central BC; and

• 4 zeroth-order central BCs.

This gives 19 equations in 19 variables.

39

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) * +
L=r2T4 * + +

mdot=f(T) + *
h(f)X’=0 + * + *
r’=C/d(f) + * + * +
L’=Ce(T) + * + * +
P’=Cg(r) * + * + +

T’=CL * + * + +
m’=C * * *

X”=R(T) + * + * + *
r’=C/d(f) * + * +
L’=Ce(T) * + * +
P’=Cg(r) * * + +

T’=CL * * + +
m’=C * * *

h(f)X’=0 + * *
r=0 *

L=0 *
m=0 *

The matrix has a block tri-diagonal structure. The variables and the equations have been ordered (i.e. per-
muted relative to their numbering in the code, which is indicated along the bottom, and down the right-hand
side) so that very significant terms are on the leading diagonal—except for the bottom right-hand element.
However, this element gets a significant value in the course of the elimination of the material below the leading
diagonal (see later).

V V E (actual)
1 2 4 5 7 8 6 (1245876)
FSBC
SDE FDE . . . FDE
6 2 4 1 3 5 (642135)
FCBC ZCBC . ZCBC ZSBC . ZSBC

4 3 2 1 2 3 1 (4231231)
The above rows give the values for the array ID, except that (a) I ‘misremembered’ the ordering of L, r and

consequential on that the ordering of the L′, r′ FDEs, and the L, r ZCBCs. This permutation doesn’t matter
at all. (b) The real code has 5 composition Variables instead of 1 (X). The 4 extra composition Variables are
numbered 3, 9, 10, 11. The 4 extra SDEs are numbered 7, 8, 9, 10, as are the 4 extra FSBCs. The 4 extra
FCBCs are numbered 5, 6, 7, 8.

The 4 below m means that the m-variable is stored as H(4,K) at meshpoint k. The 3 beside ZSBC means
that in the ZSBC portion of subroutine equns, EQU(3)= L− r2T 4. The 1 beside FDE means that in the FDE
portion of equns, EQU(1)= Pk−Pk−1−0.5C(gk +gk−1); and so on. In the illustration, P is assumed to be a
function of f only, rather than of f , T , and its gradient P′ to be C times a function of r only, etc.

* means a significant term; + is a minor term, might be comparable but need not be. Every block that
contains either *s or +s also in practice contains more non-zero but unimportant terms; all blocks that have
neither are completely empty, except for the 3rd and 4th block in the bottom row. Since the ‘central’ meshpoint
is actually half a meshpoint in from the centre (to avoid singularities like m/r2), the real ZCBCs involve both
innermost meshpoints.

40

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 + * + *
r’=C/d(f) + * + * +
L’=Ce(T) + * + * +
P’=Cg(r) * + * + +

T’=CL * + * + +
m’=C * * *

X”=R(T) + * + * + *
r’=C/d(f) * + * +
L’=Ce(T) * + * +
P’=Cg(r) * * + +

T’=CL * * + +
m’=C * * *

h(f)X’=0 + * *
r=0 *

L=0 *
m=0 *

Successive calls to difrns in solver set up successive rows of blocks in the matrix. In between these
calls, Gaussian elimination proceeds via calls to elimn8 and divide.

The first call to divide multiplies the top 3 rows by the inverse of the leading 3×3 block, reducing this
block to unity. The block to its immediate left is stored (and also the column on the far right, which is not
illustrated: when operating on the array A in Ax = y, the same operations are done on y as on A, but we only
illustrate A).

After the first call to divide, we call difrns again to fill the next 6 rows (SBC2 and DE1). Then a call to
elimn8 eliminates the blocks below the leading unit matrix: see next Fig.

41

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 * + + + *
r’=C/d(f) + * + + * +
L’=Ce(T) + + * + * +
P’=Cg(r) + + + * + +

T’=CL + + + * + +
m’=C + + + * *

X”=R(T) + * + * + *
r’=C/d(f) * + * +
L’=Ce(T) * + * +
P’=Cg(r) * * + +

T’=CL * * + +
m’=C * * *

h(f)X’=0 + * *
r=0 *

L=0 *
m=0 *

Then in divide we divide the current 6 rows (SBC2 and DE1) by the leading 6×6 matrix: next page.

42

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 1 + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + +

X”=R(T) + * + * + *
r’=C/d(f) * + * +
L’=Ce(T) * + * +
P’=Cg(r) * * + +

T’=CL * * + +
m’=C * * *

h(f)X’=0 + * *
r=0 *

L=0 *
m=0 *

Next, we fill up the next 6 rows (DE2, DE1) in difrns. Then we use elimn8 to eliminate everything
below that part of the leading diagonal which is already reduced to unit matrices. See next fig.

43

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 1 + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + *

X”=R(T) * + + + *
r’=C/d(f) + * + + * +
L’=Ce(T) + + * + * +
P’=Cg(r) + + + * + +

T’=CL + + + * + +
m’=C + + + * *

h(f)X’=0 + * *
r=0 *

L=0 *
m=0 *

Now use divide to convert the leading 6×6 array of rows DE2, DE1 to unity: next fig.

44

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 1 + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + *

X”=R(T) 1 + + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + *

h(f)X’=0 + * *
r=0 *

L=0 *
m=0 *

Now fill up the last 4 rows (CBC2, CBC1) in difrns, and elimn8 what is below the unit part of the
leading diagonal: next fig.

45

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 1 + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + +

X”=R(T) 1 + + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + +

h(f)X’=0 * + + +
r=0 + * + +

L=0 + + * +
m=0 + + + *

This must have the effect of putting some non-trivial value in the bottom right-hand corner, which was
previously empty. In fact, the previous elimn8 step will put there the product of two starred values—one at
the far right of the last m′ =C row, and one in the last (m = 0) row—in the previous fig. This should leave a
reasonably invertible 4×4 block in the bottom right: next fig.

46

eqn var f T m X r L f T m X r L f T m X r L C
P(f)=g(r) 1 + + +
L=r2T4 1 + + +

mdot=f(T) 1 + + +
h(f)X’=0 1 + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + *

X”=R(T) 1 + + + +
r’=C/d(f) 1 + + + +
L’=Ce(T) 1 + + + +
P’=Cg(r) 1 + + + +

T’=CL 1 + + + +
m’=C 1 + + + +

h(f)X’=0 1
r=0 1

L=0 1
m=0 1

We can now proceed by back-substitution to obtain the required dC, dL, dr, ... , d f at central meshpoint,
dL, dr, ... , d f at intermediate meshpoint and finally dL, dr, ... , d f at surface meshpoint.

It should be clear that while some permutations of variables and/or equations have a trivial effect—
e.g. interchanging r and L, or f and T —others permutations can have a completely disruptive effect —
e.g. interchanging m and X . Determining a viable permutation is as much an art as a science, in my experience.

Suppose we wish to add a few extra equations, as I did recently: the moment of inertia I such that

I′ =
2
3

mr2C, (C.2)

(remembering that C = m′ = dm/dk), and Prot, Horb and e: the last 2 are the orbital angular momentum and the
eccentricity. The extra BCs are I = 0 at the centre, and at the surface

d
dt

(Horb +2πI/Prot) = ... (C.3)

dHorb

dt
= ... (C.4)

de
dt

= ... (C.5)

The unspecified derivatives involve tidal friction, etc. We have apparently 1 new variable (I) and 3 new
eigenvalues (Prot, Horb, e). There would be KM+3 new equations (KM = no. of meshpoints, = 3 in the
illustration): KM-1 DE1s (for I) and 4 BCs, i.e. 1 CBC1 and 3 SBC1s. This looks OK, but apparently it isn’t:
the 3 new eigenvalues would contribute elements at the right-hand end of the top row of blocks, but the the 3
new SBC1s would require some non-trivial elements at the left-hand end, in order to give an invertible 6×6
block at the top left.

It is better in this case to reverse the order in which we scan through the meshpoints, putting the surface at
the bottom right and the centre at the top left. This will give

One can squeeze in 3 new Variables (I, Horb, e) along the top, between m and X at each meshpoint, the new
eigenvalue at the end, after C, the 3 new SBC1s after ṁ, the 3 new DE1s after m′ =C, and the 1 new CBC1
after m = 0. This allows the leading diagonal matrices to be invertible.

47

The moral seems to be that it would have been better to write the code so that the centre of the star is at the
top left and the surface at the bottom right. Apparently one should start at the end which has the fewest BCs.
This is exactly the opposite of what I supposed in 1969 when I wrote the code. It should be possible to rewrite
the solution package to work from centre to surface, but my heart sinks at the thought of it. Besides, one might
wonder whether the saving of CPU time is worth it. The current version requires inverting 9×9 matrices, apart
from the first and last; revised as I suggest this would be reduced to 7×7. But actually the figures are 13×13
and 11×11, since I have ignored 4 of the 5 composition equations. The CPU time goes as the cube of the size
of the matrix.

48

Bibliography

Eggleton P. P., 1971, MNRAS, 151, 351

Eggleton P. P., 1972, MNRAS, 156, 361

Eggleton P. P., 1973, MNRAS, 163, 279

Eggleton P. P., Faulkner J., Flannery B. P., 1973, A&A, 23, 325

Eldridge J. J., Tout C. A., 2004, MNRAS, 348, 201

Pols O. R., Tout C. A., Eggleton P. P., Han Z., 1995, MNRAS, 274, 964

Pols O. R., Schroder K. P., Hurley J. R., Tout C. A., Eggleton P. P., 1998, MNRAS, 298, 525

Reimers D., 1975, Memoires of the Societe Royale des Sciences de Liege, 8, 369

Schröder K. P., Pols O. R., Eggleton P. P., 1997, MNRAS, 285, 696

Stancliffe R. J., Eldridge J. J., 2009, MNRAS, 396, 1699

Stancliffe R. J., Tout C. A., Pols O. R., 2004, MNRAS, 352, 984

Stancliffe R. J., Lugaro M., Ugalde C., Tout C. A., Görres J., Wiescher M., 2005, MNRAS, 360, 375

Stancliffe R. J., Glebbeek E., Izzard R. G., Pols O. R., 2007, A&A, 464, L57

Vassiliadis E., Wood P. R., 1993, ApJ, 413, 641

49

	Introduction
	About the code
	About this document
	Motivation
	Structure
	Further work

	Basic user guide
	Files
	Running the code
	Viewing output
	Examples of more general operation
	Evolving a PMS model to a homogeneous ZAMS model
	Changing the mass of a ZAMS model

	Input and output
	data (1)
	COtables (10)
	physn.dat (11)
	nrate.dat (13)
	modin[2] (30)
	nucmodin[2] (31)
	out[2] (32)
	plot[2] (33)
	modout[2] (34)
	nucmodout[2] (35)
	syntha,synthb,synthc[2] (36,37,38)
	surface[2],centre[2] (39,40)
	sprocess[2] (41)
	montage[2] (42)

	Code structure
	Architecture
	Common blocks
	I/O and linking
	Code units

	Subroutines

	Input physics

	Advanced user guide
	stars cheat sheet
	Veteran tips
	Comments in I/O files
	Command line tools for manipulating plain text
	Separating models in subdirectories
	Matrix inversion

